

JUCHMME User’s Guide

Biological sequence analysis using Class Hidden Markov Models (CHMM)

http://www.compgen.org/tools/juchmme
https://github.com/pbagos/juchmme

Version 1.0; April 2019

Pantelis G. Bagos, Ioannis A. Tamposis

and the Laboratory team

License: Copyright (c) 2019, Pantelis G. Bagos

This program is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

JUCHMME is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If

not, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Document Revisions

Edition Date Author Description

1.0.1 02/03/2019 Ioannis Tamposis First Edition

1.0.2 04/05/2018 Ioannis Tamposis Add Parallelization feature

1.0.3 24/09/2019 Ioannis Tamposis Add HNN feature

1.0.4 22/04/2020 Ioannis Tamposis
Add Multiple Sequence Alignment

feature

Contents
Document Revisions .. 3

Contents .. 4

1. Introduction ... 6

2. Getting started .. 7

3. Arguments and Options .. 8

4. Input/output files.. 9

4.1. The input sequence FASTA file.. 9

4.2. The input sequence three-line file .. 9

4.3. The free transition parameter file ..10

4.4. The free emission parameter file ...10

4.5. The HMM model file ..11

4.6. The HNN Encoding parameter file ..12

4.7. The HNN weights parameter file ...13

4.8. The configuration file ...13

4.9. The Output text file..21

4.10. The input Multiple Sequence Alignment FASTA file ...23

5. Supported features ..24

5.1. Determine the Initial Probabilities of the HMM ...24

5.2. Tying ...24

5.3. Training ...24

5.4. Decoding ..26

5.5. Constrained predictions ..27

5.6. Prior probabilities ..29

5.7. Refine ...30

5.8. Statistics ...30

5.9. Random Sequences Generator ...31

5.10. Multithreaded parallelization for multicores ..31

5.11. Multiple sequence alignments ...31

6. Special features / Extensions ...31

6.1. Semi-supervised Learning ..31

6.2. Extending HMMs to allow conditioning on previous observations34

6.3. Hidden Neural Network (HNN) ..36

7. Examples ...38

7.1. PRED-TMMB ..38

7.2. HMM-TM ...39

7.3. PRED-TAT ..40

7.4. PRED-LIPO ..41

7.5. PRED-SIGNAL ...41

7.6. LPXTG ..42

7.7. HMMpTM ..42

7.8. DEMO ...42

8. Future developments ...44

References ...45

1. Introduction

JUCHMME, an acronym for Java Utility for Class Hidden Markov Models and Extensions is a tool

developed for biological sequence analysis.

The overall aim of this work has been to develop a software tool that would offer a large collection

of standard algorithms of Hidden Markov Models (HMMs), as well as, a number of extensions and

to evaluate the software applied to various biological problems. The JUCHMME framework is

characterized by:

Flexibility: Ease of use and customization for various problems. The user can create models of

any architecture and any alphabet (DNA, protein or other), without requiring any

programming capabilities (all required settings are defined in a configuration file).

Training methods: JUCHMME integrates a wide range of training algorithms for HMMs for labeled

sequences. These kind of models are often referred to as “class HMMs” and are commonly

trained using the Maximum Likelihood (ML) criterion to model within-class data

distributions. The tool has been developed to support the Baum-Welch algorithm [1-3] and

its extension that is necessary to handle labeled data [4]. Other alternatives are also

supported, like the gradient-descent algorithm proposed by Baldi and Chauvin [5] and the

Viterbi training (also known as “segmental K-means”) [6]. Additionally, the Conditional

Maximum Likelihood (CML) criterion, which corresponds to discriminative training, is also

supported. The CML training can be performed only with gradient based algorithms, and

to this end a fast and robust algorithm for individual learning rate adaptation has been

implemented [7]. The same algorithm is available for training the Hidden Neural Networks

(HNN, see below).

Decoding: A wide range of decoding algorithms are integrated such as Viterbi, N–Best [8],

posterior–Viterbi [9] and Optimal Accuracy Posterior Decoder [10]. Moreover, decoding of

partially labeled data is offered with all algorithms in order to allow incorporation of

experimental information [11].

Training Procedures: It contains built-in model creation and evaluation procedures, such as

options for independent tests, self-consistency tests, jacknife tests, k–fold cross-validation

and early stopping. All the prediction algorithms also incorporate appropriate reliability

measures [12] and performance indices that have been widely used [13, 14] (such as the

correlation coefficient, Q, or SOV).

HMM Extensions: To overcome standard HMM and class HMM limitations, a number of

extensions have been developed such as segmental k–means (Viterbi training) for labeled

sequences both for Maximum Likelihood (ML) [6] and for Conditional Maximum Likelihood

(CML) training [15], Hidden Neural Networks (HNNs) [16], models that condition on

previous observations [17] and a method for semi-supervised learning of HMMs that can

incorporate labeled, unlabeled and partially-labeled data (semi–supervised learning) [18].

What HMMs are

Hidden Markov Models (HMMs) are probabilistic models. HMMs are generative models and in

their basic formulation operate in an unsupervised manner, since they simply describe a finite

mixture of multinomial distributions, where the mixture probabilities form a 1st order Markov chain.

In this setting, during the training phase we maximize P(x|θ), which is the probability of the data

given the model, whereas in the decoding phase we recover the hidden sequence of states that

are most likely to have generated the data. In this manner, the only “supervision” needed is that

of providing a reliable set of homologous sequences. When there is a need to compare different

competing models, supervision is used indirectly, i.e. we train the different models separately and

in the testing phase we simply choose the one with the highest probability (i.e. in a database

search). In other applications, such as structure prediction, a sequence of labels (y) is tied to each

observation sequence (x), corresponding to the different attributes that we wish to predict. In this

case, we usually maximize P(x,y|θ), which is the joint probability of the sequences and the labels

given the model, or P(y|x,θ), which is the probability of labels given the sequences and the model.

These approaches typically correspond to a supervised learning procedure where each sequence

x is accompanied by a complete sequence of well-defined labels y.

Applications of HMMs

The Hidden Markov Models (HMMs) are one of the most successful modeling approaches in

speech recognition [3]. During the past two decades they were successfully applied on various

tasks in computational molecular biology where they were proven to be useful for several

problems in biological sequence analysis [2]. These include gene finding [19], multiple sequence

alignment [20], prediction of signal peptides [21, 22], prediction of bacterial lipoproteins [23, 24],

prediction of cell-wall sorting signals [25], prediction of protein secondary structure [26] and

prediction of transmembrane protein topology [27, 28]. In several of these applications such as

topology prediction of transmembrane proteins, HMMs have been found to perform significantly

better compared to other sophisticated Machine-Learning techniques (e.g. Neural Networks or

Support Vector Machines), as demonstrated in several evaluation studies [29-31].

A general definition of HMMs and an excellent tutorial introduction to their use has been written

by Rabiner [3]. This shorthand usage is for convenience only. For a review of Class HMMs, see

[19] and for a complete book on the subject of probabilistic modeling in computational biology,

see [2].

2. Getting started

JUCHMME is a Java executable that can be run from the command line. JUCHMME is written in

Java and requires a 32-bit or 64-bit Java runtime environment version 7 or later, freely available

from http://www.java.org. The Windows and MacOS X installers contain a suitable Java runtime

environment that will be used if a suitable Java runtime environment cannot be found on the

computer.

Download the program from http://www.compgen.org/tools/juchmme or Github

https://github.com/pbagos/juchmme .

Compile:

javac -XDignore.symbol.file -sourcepath src/ -d ./bin src/hmm/Juchmme.java

http://www.java.org/
http://www.compgen.org/tools/juchmme
https://github.com/pbagos/juchmme

javac -XDignore.symbol.file -sourcepath src/ -d ./bin src/hmm/RandomSeq.java

javac -XDignore.symbol.file -sourcepath src/ -d ./bin src/nn/Main.java

Libraries and other installation requirements:

JUCHMME includes a software library called JOONE (Java Object Oriented Neural Network)

library (http://www.joone.org/) which is a Java framework to build and run AI applications based

on neural networks, which it will automatically compile during its installation process. By default,

JUCHMME does not require any additional libraries to be installed by you.

3. Arguments and Options

The juchmme program provides a list of command-line arguments and options.

− V: print JUCHMME version and exit

− a: the free emission parameter file (see section 4.4). This parameter file is required.

− e: the free transition parameter file (see section 4.3)

− i: the input sequence three-line file. This file stores the input sequences for decoding or training

algorithms in a three-line format (see section 4.2).

− f: the input sequence FASTA file. This file stores the input sequences for decoding algorithms

in FASTA format (see section 4.1).

− A: the input Multiple Sequence Alignment FASTA file. This file stores the input Multiple

sequence Alignment (MSA) in for decoding algorithms in one line FASTA format (see section

4.10).

− m: the model file (see section 4.5). This parameter file is required.

− w: the HNN weights parameter file (see section 4.7)

− x: the HNN encoding file (see section 4.6)

− t: Training option

− c: the configuration file (see section 4.8)

− v cluster size: k–fold cross-validation mode using an integer larger than 0 for cluster size (for

instance clusterSize=175)

− k number of clusters: k–fold cross-validation mode using an integer larger than 0 for k (for

instance k=10)

− s: self-consistency test

− j: jacknife test

− p: show plot

− P: plot directory

By default, JUCHMME uses memory mapping to access its index files. If you intend to align a

large number of files in a single run of JUCHMME, then it may be more efficient to have the

program preload the complete index. To achieve this, use the command-line java option –Xmxn.

-Xmxn

http://www.joone.org/

Specify the maximum size, in bytes, of the memory allocation pool. This value must be a multiple

of 1024 and greater than 2MB. Append the letter k or K to indicate kilobytes, or m or M to indicate

megabytes. The default value is 64MB. The upper limit for this value will be approximately 4000m

on Solaris 7 and Solaris 8 SPARC platforms and 2000m on Solaris 2.6 and x86 platforms, minus

overhead amounts. Examples:

 -Xmx83886080

 -Xmx81920k

 -Xmx80m

If you intend to use the extension of encoding (see section 5.2), the proposed method comprises

of automatic conversion of initial symbols, according to the standard character encoding Unicode,

using UTF-8 that is memory efficient and used by many operating systems and programming

languages. To achieve this, use the command-line java option –Dfile.encoding=UTF-8.

java -Xmx4096m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/A_TMBB2 -e

../tables/E_TMBB2 -c ../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/barels_10LA.seq -d

../input/barrels14_seqs.txt

Random Sequence utility

Given a model, JUCHMME can generate a set of random sequences. This option can be useful

for testing purposes. The user needs to provide the number of the sequences along with the

transition, emission and configuration files for the given model.

java hmm/RandomSeq ../tables/A_TMBB2 ../tables/E_TMBB2 ../conf/conf.tmbb

../models/tmbb.mdel 100

4. Input/output files

4.1. The input sequence FASTA file

This file stores the input sequences for decoding algorithms in a FASTA-like format. The following

is an example of an input sequence file:

>22 COXH_BOVIN

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK

4.2. The input sequence three-line file

This file stores the input sequences for decoding or training algorithms in a three-line FASTA

format. The following is an example of an input sequence file:

>22 COXH_BOVIN

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK

IIIIIIIIIIIIIIIIMMMMMMMMMMMMMMMMMMMMMMMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

The first line has the FASTA header line, the second line has the observed sequence and the

third line has the labels. If semi-supervised learning is used for training, the sequences in the

input three-line file can contain unlabeled sequences (missing observations). The observation line

followed by the character “-” for each amino acid like the following example:

>22 COXH_BOVIN

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK

or partially-labeled sequences like the following example:

>22 COXH_BOVIN

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK

----------------MMMMMMM-------MMMMMMMMMOOOOOOOOO-------------------------

4.3. The free transition parameter file

This file defines the free transition parameters and is required for setting up the transition

probabilities of an HMM. All free transition parameters are stored in this file. We specify a free

transition parameter for a 4-state HMM including begin (B) and end (E) states (see section 7.8)

with the following format:

0.000 0.800 0.200 0.000 0.000 0.000

0.000 0.750 0.250 0.000 0.000 0.000

0.000 0.150 0.550 0.300 0.000 0.000

0.000 0.000 0.000 0.550 0.200 0.100

0.000 0.100 0.000 0.230 0.520 0.150

0.000 0.000 0.000 0.000 0.000 0.000

For a 4-state HMM model including begin (B) and end (E) states we need a file with 6 (lines) x 6

(columns). The six columns should be separated by a space or a tab character. The default value

for the pseudo-probabilities is 0. In this free transition parameter file, each line represents one

free transition parameter. Each line must sum to 1.

4.4. The free emission parameter file

This text file is required for setting up the emission probabilities of an HMM. We call a grouped

set of emission probabilities which defines the emission probabilities for a state in the HMM a free

emission parameter. All free emission parameters are stored in this file. We specify a free

emission parameter for a 4-state HMM including begin (B) and end (E) states (see section 7.8)

with the following format:

0.000 0.000 0.000 0.000

0.055 0.002 0.017 0.007

0.068 0.001 0.058 0.063

0.123 0.001 0.011 0.005

0.068 0.021 0.058 0.063

0.000 0.000 0.000 0.000

In the case of DNA for instance, an observed sequence is composed by a discrete set of 4

symbols, following the single-letter codes for the 4 nucleotides: A, C, G, T. For a 4-state HMM

including begin (B) and end (E) states model we need a file with 4 (lines) x 6 (columns). The four

columns should be separated by a space or a tab character.

4.5. The HMM model file

The models used by JUCHMME are described in files written in simple text format using

straightforward conventions. It is easy to write, understand and modify them, or to create them

using a separate program. This text file is required for setting up the model design. We specify a

model file for an HMM with four states (B0, M1, M2, O1, O2, E0) two with label (M) and two with

label (O). The model includes also begin (B) and end (E) states (see section 7.8).

MODEL OPTIONS

MODEL=DEMO

ESYM=AGCT

OSYM=MmOoBE

PSYM=MOBE

#Model Unique Labels

transmLabels=M

inLabels=I

outLabels=O

#Model states and labels

STATE=B0 M1 M2 O1 O2 E0

OSTATE=B M m O o E

PSTATE=B M M O O E

#MODEL PRIOR for every esym

PRIOR = 0.077 0.018 0.058 0.066

Distribution for each osym

Each column must have a sum equal to 1

osym M m O o B E

PRIOR1 = 0.97 0.97 0.97 0.95 0.0 0.0

PRIOR2 = 0.01 0.01 0.01 0.01 0.0 0.0

PRIOR3 = 0.02 0.02 0.02 0.04 0.0 0.0

OSYM represents the Alphabet of the observations.

OSYM represents the Alphabet of the “tied” states (parameter tying) (see section 5.2).

PSYM represents the Alphabet of the Labels.

STATE represents the model states.

OSTATE represents the “tied” states (parameter tying) (see section 5.2).

PSTATE represents the label for each state. Here we limit HMM models to one label for each

state, which is probably the most useful approach for most known problems.

JUCHMME provides a very flexible way of integrating prior probabilities along the input sequences

into the prediction process; a mapping between the labels of the states in the HMM and the

different types of prior information has to be defined (see section 5.6).

4.6. The HNN Encoding parameter file

This text file is required for setting up the encoding of an HNN.

Array representation of Binary (SPARCE) Encoding Table. Refer to the below matrix for

corresponding amino acids.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Array representation of Blosum-62 Encoding Table. Refer to the below matrix for corresponding

amino acids.

4 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1 -1 -1 2 0 0 -3 -2

0 9 -3 -4 -2 -3 -3 -1 -3 -1 -1 -3 -3 -3 -3 -1 -1 -1 -2 -2

-2 -3 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -1 -3 -4 -3

-1 -4 2 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -2

-2 -2 -3 -3 6 -3 -1 0 -3 0 0 -3 -4 -3 -3 -2 -2 -1 1 3

0 -3 -1 -2 -3 6 -2 -4 -2 -4 -3 0 -2 -2 -2 0 -2 -3 -2 -3

-2 -3 -1 0 -1 -2 8 -3 -1 -3 -2 1 -2 0 0 -1 -2 -3 -2 2

-1 -1 -3 -3 0 -4 -3 4 -3 2 1 -3 -3 -3 -3 -2 -1 3 -3 -1

-1 -3 -1 1 -3 -2 -1 -3 5 -2 -1 0 -1 1 2 0 -1 -2 -3 -2

-1 -1 -4 -3 0 -4 -3 2 -2 4 2 -3 -3 -2 -2 -2 -1 1 -2 -1

-1 -1 -3 -2 0 -3 -2 1 -1 2 5 -2 -2 0 -1 -1 -1 1 -1 -1

-2 -3 1 0 -3 0 1 -3 0 -3 -2 6 -2 0 0 1 0 -3 -4 -2

-1 -3 -1 -1 -4 -2 -2 -3 -1 -3 -2 -2 7 -1 -2 -1 -1 -2 -4 -3

-1 -3 0 2 -3 -2 0 -3 1 -2 0 0 -1 5 1 0 -1 -2 -2 -1

-1 -3 -2 0 -3 -2 0 -3 2 -2 -1 0 -2 1 5 -1 -1 -3 -3 -2

1 -1 0 0 -2 0 -1 -2 0 -2 -1 1 -1 0 -1 4 1 -2 -3 -2

0 -1 -1 -1 -2 -2 -2 -1 -1 -1 -1 0 -1 -1 -1 1 5 0 -2 -2

0 -1 -3 -2 -1 -3 -3 3 -2 1 1 -3 -2 -2 -3 -2 0 4 -3 -1

-3 -2 -4 -3 1 -2 -2 -3 -3 -2 -1 -4 -4 -2 -3 -3 -2 -3 11 2

-2 -2 -3 -2 3 -3 2 -1 -2 -1 -1 -2 -3 -1 -2 -2 -2 -1 2 7

4.7. The HNN weights parameter file

This file defines the weights parameters and is required for setting up the weights probabilities of

an HNN. All free weights parameters are stored in this file.

Weights are defined by the set of OSYM (without Begin and End States), the number of hidden

neurons hidden layer (Configuration Setting) and the sliding window size multiplied by the set of

symbols.

We specify a free weights parameter for a 4-osym-state HMM, 3 hidden neurons layer and a

sliding window size 7 with the following format:

NEURAL 0

WTS12 -0.15696 1.14555 -8.59802 ... 16.01435

WTS12 -0.62859 0.85758 -0.07924 ... -3.65333

WTS12 -5.31464 -55.84822 8.62123 ... -33.08123

WTS23 -0.19443 -1.11150 0.91709 -0.42294

NEURAL 1

WTS12 -0.23986 0.10515 -21.70516 ... 10.46336

WTS12 -0.18695 20.63290 -21.92341 ... -4.76647

WTS12 -0.59495 -30.60860 -16.51392 ... -1.63771

WTS23 -0.00441 -0.039497 0.08402 -0.05086

NEURAL 2

WTS12 -7.64004 -56.26525 -27.66893 ... 15.18229

WTS12 -8.28003 -34.02406 -37.30982 ... -29.11880

WTS12 0.257946 0.84665 3.00777 ... 9.91106

WTS23 1.794773 -3.73520 -2.055307 -12.45842

NEURAL 3

WTS12 -14.88240 24.10897 -10.74230 ... -5.57302

WTS12 -2.84271 3.16543 33.28198 ... 32.04171

WTS12 -1.01723 -6.44938 30.87235 ... 18.17052

WTS23 0.38879 -2.49222 -1.77682 -2.89902

NEURAL 4

WTS12 -14.25349 10.14863 -84.25486 ... -38.58804

WTS12 4.70765 -53.21236 92.12243 ... 7.30671

WTS12 -1.95006 -37.02785 39.10344 ... 14.11872

WTS23 0.67631 -2.58945 -7.75523 0.15810

4.8. The configuration file

A configuration file makes it possible to use most of the library’s algorithms without writing any

line of code.

There are a number of options for specifying the output generated by the program.

TRAINING OPTIONS

RUN_CML: Use this option to specify if Conditional Maximum Likelihood (CML) method is to be

used; it accepts two values, i.e. true/false (default value is false). CML implies

Gradient (RUN_GRADIENT).

RUN_GRADIENT: Use this option to specify if Gradient method is to be used; it accepts two

values, i.e. true/false (default value is false). If RUN_CML is true, then Gradient is

used by default. If both CML and GRADIENT options are false, then the traditional

Baum-Welch algorithm is used.

HNN: Use this option to specify if Hidden Neural Network (HNN) method is to be used; it accepts

two values, i.e. true/false (default value is false)

ALLOW_BEGIN: Use this option to specify if Begin state is to be used; it accepts two values, i.e.

true/false (default value is true)

ALLOW_END: Use this option to specify if End state is to be used; it accepts two values, i.e.

true/false (default value is true)

RUN_ViterbiTraining: Use this option to specify if Viterbi Training Method is to be used; it accepts

two values, i.e. true/false (default value is false). VITERBI can be used, as the method

of computing expected counts, with all the previous combinations of CML and

GRADIENT.

threshold: This option specifies a threshold score for terminating the training algorithm; the default

value is 0.02.

maxIter: This attribute specifies the maximum number of iterations for terminating the training

algorithm; the default value is 200.

Fig. 1. The training workflow.

PROBABILITIES

TRANSITIONS: Use this option to specify which method is to be used to initialize transition

probabilities; it accepts either of the following four values (see section 4.3).

− FILE, Initialize Transition probabilities by file (default value)

− RANDOM, Randomizing Transitions (*)

− UNIFORM, Uniformizing Transitions (*)

− VITERBI, Initialize Transition probabilities using Viterbi method (*)

(*) for all these methods, a valid transition probabilities matrix is needed, since the grammar of

the HMM depends on it in order to determine the non-zero (allowed) transitions.

EMISSIONS: Use this option to specify which method is to be used to initialize emission

probabilities; it accepts either of the following four values ((see section 4.4).

− FILE, Initialize Emission probabilities by file (default value)

− RANDOM, Randomizing Emissions

− UNIFORM, Uniformizing Emissions

− VITERBI, Initialize Emission probabilities using Viterbi method

WEIGHTS: Use this option to specify which method is to be used to initialize HNN weights; it

accepts either of the following four values (see section 4.7).

− FILE, Initialize HNN weights by file (default value)

− RANDOM_NORMAL, Randomizing HNN weights

− RANDOM_UNIFORM, Randomizing HNN weights using the Normal method

− RPROP, Initialize HNN weights using the RPROP method

− BOOT, Initialize HNN weights using the Bootstrap method

Multithreaded parallelization for multicores

PARALLEL: Use this option to specify if multithreaded parallelization method is to be used; it

accepts two values true/false (default value is false). If you specify false value, the

program will run in serial mode.

allCPU: Use this option to specify if JUCHMME will use all available cores on your machine; it

accepts two values true/false (default value is false).

nCPU: Use this option to specify the number of cores each JUCHMME process will use for

computation; it accepts positive values 0 < value < Available Cores on your machine.

SEMI-SUPERVISED LEARNING OPTIONS (see section 5.1)

SSL_ENABLED: Use this option to specify if Semi-supervised learning method is to be used, it

accepts two values, i.e. true/false (default value is false).

SSL_METHOD: Use this option to specify which Semi-supervised training method is to be used,

it accepts either of the following two values

− 1: SSL, Self-training (default value)

− 2: GEM, Generalized EM

SSL_ADD_METHOD: Use this option to specify which method is to be used to add sequences.
The option is defined by an integer; it accepts either of the following four values:

− 1: Use all (default value)

− 2: Use all, weighted by a (constant) value of λ<1

− 3: Use all, weighted by P(y*|xu,θ)

− 4: Use most confident examples, those with reliability less than a given threshold

SSL_USING_METHOD: Use this option to specify which decoding method is to be used. The

option is defined by an integer; it accepts either of the following four values:

− 1: VITERBI

− 2: NBEST [8]

− 3: Posterior–Viterbi (POSVIT) [9]

− 4: Optimal Accuracy Posterior Decoder (PLP) [10] (default value)

SSL_THRESHOLD: This option specifies a threshold score for terminating the semi-supervised

training algorithm (default value is 0.000002)

SSL_maxIter: This attribute specifies the maximum number of iterations for terminating the semi-

supervised training algorithm (default value is 200).

SSL_relscore: This attribute specifies the optimal threshold used by method 4 (default value is

0.95)

SSL_WEIGHT: This attribute specifies the (constant) value of λ used by method 2 (default value

is 0.2).

EXTENDED ENCODING OPTIONS (see section 6.2)

PAST_OBS_EXTENSION: Use this option to specify if Extending Encoding Method is to be used;

it accepts two values, i.e. true/false (default value is false).

ENCODE_TYPE: Use this option to specify the Encoding Scheme. The option is defined by an

integer; it accepts either of the following four values. If you specify 0 as value, the

program will run with your own Encoding scheme taking into account the parameters

GROUP_SYMBOLS and GROUPING:

− 1 (default value): An Encoding with 40 (20x2) symbols depending on whether the

previous residue is hydrophobic (A, F, H, I, L, M, V, W, Y) or non-hydrophobic (C, D,

E, G, K, N, P, Q, R, S, T). (Encoding 1).

− 2: An Encoding with 80 (20x4) symbols depending on whether the previous residue

is: Hydrophobic–Aromatic (F, H, Y, W), Hydrophobic–non-Aromatic (A, I, L, M, V,

G), non-Hydrophobic–Charged (D, E, K, R), non-Hydrophobic–Polar (C, N, P, Q, S,

T). (Encoding 2).

− 3: An Encoding with 160 (20x8) symbols depending on whether the previous residue

is: Hydrophobic–Small (A, G), Polar–Special (P, C), Polar–OH (S, T), Polar–NH (N,

Q), Charged–Negative (D, E), Charged–Positive (K, R), Hydrophobic–Huge (I, L, M,

V) and Hydrophobic–Aromatic (F, H, Y, W). (Encoding 3).

− 4: An Encoding with 400 (20x20) symbols that takes into account all possible

dipeptide combinations. (Encoding 4).

GROUP_SYMBOLS: Use this option to specify the number of groups. The option is defined by a

String. For instance, to define an encoding with two groups, depending on whether

the previous residue is hydrophobic (A, F, H, I, L, M, V, W, Y) or non-hydrophobic (C,

D, E, G, K, N, P, Q, R, S, T), use 0 for hydrophobic and 1 for non-hydrophobic (see

section 6.2).

GROUPING: Use this option to specify in which group corresponds each letter of the alphabet.

The option is defined by a String. For instance, to define an encoding with two groups,

depending on whether the previous residue is hydrophobic (A, F, H, I, L, M, V, W, Y)

or non-hydrophobic (C, D, E, G, K, N, P, Q, R, S, T), use value

10001011011000000111 (see section 6.2).

PAST_OBS_NO: Use this option to specify the number of previous observations. The option is

defined by an integer (default value is 1).

DYNAMIC OPTIONS

These parameters control the dynamic programming algorithm used for imposing constraints in

Posterior decoding prediction. The algorithm is based on [32-35], but it is considered obsolete.

MINHLEN: Use this option to specify the minimum length of predicted strands (default value is 7).

MINLLEN: Use this option to specify the minimum length of predicted loop (default value is 1).

MAXHLEN: Use this option to specify the maximum length of predicted strands (default value is

17).

MAXNSTRAND: Use this option to specify the maximum number of predicted strands (default

value is 32).

MINSSC: Use this option to specify the minimum score of predicted strands (default value is 3).

STRDIV: Use this option to specify the minimum sequence length required for one predicted

strand (default value is 9).

Refine OPTIONS (see section 5.7)

FLANK: Use this option to specify a flanking region (i.e. number of residues in each direction of

the end of a membrane-spanning helix).

REFINE: Use this option to specify if Refine method is to be used; it accepts two values, i.e.

true/false (default value is false).

ML_INIT: Use this option to specify if the starting output model would be CML with ML;, it accepts

two values, i.e. true/false (default value is false).

DECODING OPTIONS (see section 5.4)

VITERBI: Use this option to specify if Viterbi Decoding method is to be used; it accepts two values,

i.e. true/false (default value is true)

NBEST: Use this option to specify if NBest Decoding method is to be used; it accepts two values,

i.e. true/false (default value is false) [8]

DYNAMIC: Use this option to specify if Dynamic Decoding method is to be used; it accepts two

values, i.e. true/false (default value is false).

POSVIT: Use this option to specify if Posterior–Viterbi Decoding method is to be used; it accepts

two values, i.e. true/false (default value is false) [9].

PLP: Use this option to specify if Optimal Accuracy Posterior Decoder Decoding method is to be

used; it accepts two values, i.e. true/false (default value is true) [10].

All decoding methods can be used in conjunction.

CONSTRAINT: Use this option to specify if constraint method is to be used; it accepts two values,

i.e. true/false (default value is false) (see section 5.5).

Fig. 2. The training workflow.

EARLY STOPPING

EARLY: Use this option to specify if the early stopping method is to be used; it accepts two values,

i.e. true/false (default value is false).

CUSTOM_STOP: Use this option to specify a weight factor for Early Stopping method; the default

value is 0.0.

NTRAIN: This attribute specifies the number of sequences for training in the early stopping

method (the default value is 15).

NROUND: This attribute specifies the maximum number of iterations for running the early

stopping method (default value is 5).

ITER: This attribute specifies the maximum number of iterations that start running the early

stopping training algorithm (default value is 2).

GRADIENT DESCENT OPTIONS

As presented in [7], JUCHMME supports two algorithms that use individual learning rate

adaptation. If both options are set to TRUE then the algorithm #2 is used. This is a version of the

RPROP algorithm [36] for individual learning rate adaptation, originally proposed for Neural

Networks. If RPROP is false and SILVA is true, then the algorithm #1 is used, which uses an

individual learning rate (a variant of the Silva and Almeida algorithm). The difference of the two

algorithms lies in the fact that in RPROP the magnitude of the partial derivative is neglected and

only its sign is used. This method seems to perform best. When both options are set to FALSE,

standard gradient descent is applied. When RPROP is true and SILVA is false, a variant of the

Manhattan method is applied, but this method is neither tested, nor is it expected to work well.

For standard gradient descent we use learning rates, ranging between 0.001 to 0.1 for both

emission (kappaE) and transition probabilities (kappaA), whereas the same values were used for

the initial parameters for every parameter of the model. Finally, for setting the minimum and

maximum allowed learning rates we used kappaAmin, kappaEmin equal to 10-20 and

kappaAmax,kappaEmax equal to 10.

RPROP: Use this option to specify the training method. It is enabled if RUN_GRADIENT method

is used (ML or CML) and it accepts two values, i.e. true/false (default value is true).

The option works in combination with SILVA (*).

SILVA: Use this option to specify the training method. It is enabled if RUN_GRADIENT method is

used (ML or CML) and it accepts two values, i.e. true/false (default value is true). The

option works in combination with RPROP (*).

momentum: To avoid to get stuck in a local minima, we use a momentum term in the objective

function, which is a value between 0 and 1 that increases the size of the steps taken

towards the minimum by trying to jump from a local minima.

kappaA: Use this option to specify the learning rate of Transitions (default value is 0.01D).

kappaAmin: Use this option to specify the minimum value of learning rate of Transitions, in case

an individual learning rate training method is used (default value is 1e-20).

kappaAmax: Use this option to specify the maximum value of learning rate of Transitions, in case

an individual learning rate training method is used (default value is 1.0).

kappaE: Use this option to specify the learning rate of Emissions (default value is 0.01D).

kappaEmin: Use this option to specify the minimum value of learning rate of Emissions, in case

an individual learning rate training method is used (default value is 1e-20).

kappaEmax: Use this option to specify the maximum value of learning rate of Emissions, in case

an individual learning rate training method is used (default value is 1.0).

NPLUS: Use this option to specify a value for increasing factors (default value is 1.2).

NMINUS: Use this option to specify a value for decreasing factors (default value is 0.5).

PRIOR OPTIONS (see section 5.6)

NOISE_TR: Use this option to specify if prior information is to be added in transitions; it accepts

two values, i.e. true/false (default value is true).

NOISE_EM: Use this option to specify if prior information is to be added in emissions; it accepts

two values, i.e. true/false (default value is true).

PRIOR_TRANS: Use this option to specify a prior probability in [0:1] of Transitions (default value

is 0.001).

HNN OPTIONS (see section 6.3)

windowLeft: Use this option to specify the sequence window size on the left, default value is 3.

windowRight: Use this option to specify the sequence window size on the right, default value is 3.

nhidden: This attribute specifies the number of hidden neurons of the hidden layer, the default

value is 3.

ADD_GRAD: Use this option to specify a weight factor for error in the Gradient Descent Method

(default value is 0.0).

DECAY: Use this option to specify a weight decay that causes the weights to exponentially decay

to zero (default value is 0.001). A different way to constrain a network, and thus

decrease its complexity, is to limit the growth of the weights through some kind of

weight decay. It should prevent the weights from growing too big unless it is really

necessary. It can be imposed by adding a term to the cost function that penalizes

large weights [37].

hiddenLayerFunction: Use this option to specify which hidden layer activation function is to be

used.

− 1: Sigmoid Function.
− 2: Sigmoid Modified Function (default value).
− 3: Tanh.

BOOTSTRAP OPTIONS (HNN ONLY)

BOOT: Use this option to specify the maximum number of iterations to weights initialization by

Bootstrap Method (the default value is 0).

STDEV: Use this option to specify the Standard Deviation (the default value is 1.5).

RANGE: Use this option to specify a double number to initialize the pseudo-random weights (the

default value is 5.0).

SEED: Use this option to specify a long number to initialize the pseudo-random weights (the

default value is 568381).

WEIGHT_RAND: Use this option to add noise to weights initialization (the default value is 0.0).

WEIGHT_TIME: Use this option to specify if a seed value is to be used; it accepts two values, i.e.

true/false (default value is false).

RpropNN OPTIONS (HNN ONLY)

numberOfCycles: This attribute specifies the maximum number of iterations for terminating the

training algorithm (the default value is 150).

doCrossVal: Use this option to specify if Cross Validation method is to be used; it accepts two

values, i.e. true/false (default value is false).

crossValIter: This attribute specifies the maximum number of iterations for terminating the Cross-

Validation training procedure (the default value is 5).

minGEdiff: This attribute specifies the maximum number of error between two iterations to

terminate the training algorithm (the default value is 0).

globalError: This attribute specifies the global Error function, it accepts two values, i.e. RMSE/CE

(default value is RMSE)

initialDelta: Use this option to specify the learning rate (default value is 0.1).

maxDelta: Use this option to specify the maximum delta value (default value is 50).

minDelta: Use this option to specify the minimum delta value (default value is 1e-6).

etaInc: Use this option to specify the incremental learning factor/rate (default value is 1.2).

etaDec: Use this option to specify the decremental learning factor/rate (default value is 0.5).

4.9. The Output text file

JUCHMME provides a simple output text file for the free transition parameters (see section 4.3),

a simple output text file for the free emission parameters (see section 4.4) and a simple output

text file for the HNN weights parameters (see section 4.7).

JUCHMME also provides a simple output text file for storing the results of sequence decoding or

training. The first section is the header that tells you what program you ran, on what, and with

which options.

JUCHMME :: Java Utility for Class Hidden Markov Models and Extensions

Version 2.1; September 2018

Copyright (C) 2018 Pantelis Bagos

Freely distributed under the GNU General Public Licence (GPLv3)

--

Preparing System Arguments

--

Preparing System Model (../models/demo.mdel)

Using model DEMO

Model has 6 states.

--

Preparing System Configuration (../conf/conf.demo)

Multithreaded parallelization = true

Processors : 10

Ka = 0.01 min = 1.0E-20 max = 1.0

Ke = 0.01 min = 1.0E-20 max = 1.0

momentum = 0.0

RPROP = true SILVA =true Weight Decay = 0.001

PRIOR_TRANS= 0.001

--

Preparing Sequences

100 sequences in file ../input/demoSet.seq

100 sequences are Labeled

--

Initialize Transition Probabilities By File

Initialize Emission Probabilities By File

--

The second section is the training, which starts with the label TRAINING and the training

procedure that can be one of Self Consistency, Cross-Validation or JackKnife. Then, all training

steps according to the system configurations are shown.

TRAINING - Self Consistency

 Computing Forward+Backward (Clumped)

1 log likelihood = -2275.8711098899776

 Computing expected counts

 ...

 Updating transitions and emissions using Baum-Welch

E zero at k=0

A zero at k=5

E zero at k=5

 Computing Forward+Backward (Clumped)

2 log likelihood = -2614.1851848861643 diff = 338.3140749961867

 Computing expected counts

 ...

 Updating transitions and emissions using Baum-Welch

E zero at k=0

A zero at k=5

E zero at k=5

The third section is the TESTING/DECODING. First, JUCHMME reports the sequence details

such as sequence identifier (ID), sequence (SQ) and sequence observation (OB). Next, results

are generated for each algorithm that the user defined in the configuration file. For each algorithm,

we use a different set of labels and, more specifically, a different label at the beginning of each

line. For instance, in the case of the VITERBI algorithm we use the labels (VS, VR, VP, where S

stands for Score, R stands for Reliability and P stands for Path), in the case of the Optimal

Accuracy Posterior Decoder algorithm the respective labels (LS, LR, LP), for Posterior-Viterbi we

have PS, PR and PP, whereas for N-best we have NS, NR, NP.

TESTING

ID: >SEQ_82

SQ: ACAAACGAAATCCACACAAAC

OB: MMMMMMMMMMMMMOOOOOOOO

CC: lng = 21.0 logodds = 27.676880823281603 (-logprob/lng) = 1.4170089237786447

VS: -3.143084398920788

VR: 0.5443280039582037

VP: MMMMMMOOOOOOOOOOOOOOO

PS: 19.244528764979968

PR: 0.7914446048321854

PP: MMMMMMMMMMMMMOOOOOOOO

LS: 32.567814447386866

LR: 0.7914446048321854

LP: MMMMMMMMMMMMMOOOOOOOO

NS: -1.8184147700199027

NR: 0.7914446048321854

NP: MMMMMMMMMMMMMOOOOOOOO

The fourth section is the statistics. JUCHMME prints statistical results for each decoding algorithm

which starts with the label identified by its name (see section 5.8). For measures of accuracy in

case of membrane protein prediction methods we used the fraction of the correctly predicted

residues in a two-state mode (Q2), the fraction of proteins with correctly predicted topologies, the

segments over-lap measure (SOV) and the Mathews correlation coefficient (MCC) that

summarizes in a single measure true positives (TP), false positives (FP), true negatives (TN) and

false negatives (FN). In other cases, users can use decoding output to implement their measures.

VITERBI:

Q2:0.845 Qa:0.737 Qna:0.916 Pa:0.855 Pna:0.839 Qfas:0.827

Ca:0.673 SM:0.885 TP:596 FP:37 FN:122 Correct Top:10 Correct Ori:10 Avg SOV:0.787

PLP:

Q2:0.852 Qa:0.772 Qna:0.906 Pa:0.846 Pna:0.856 Qfas:0.839

Ca:0.690 SM:0.904 TP:627 FP:47 FN:91 Correct Top:14 Correct Ori:14 Avg SOV:0.807

Finally, JUCHMME reports the Execution time.

Execution time = 561 miliseconds

Execution time = 0.561 seconds

4.10. The input Multiple Sequence Alignment FASTA file

This file stores the input Multiple Sequence Alignment for decoding algorithms in one line

FASTA format. The following is an example of an input sequence file:

>B1L914|3dinE

MKTF-FL-IVHTI-ISVAL-I-Y-MVQVQ-M-S-K---F--S--E-L-----G-----G---AF----G-----S--

--G-----G-------L-----H----T--V---F----G---R----R--K--G--L---D----T---G-G-K--

-I---T-LVLSVLFFVSCV--VT--AF-V-L-TR-------

>A0A2A4PUF1/1-81 [subseq from] A0A2A4PUF1

MQTI-LL-LIHVV-IAVAL-V-G-LVLLQ-H-G-K---G--A--D-A-----G-----A---AF----G-----S--

--G-----A-------S-----Q----T--V---F----G---S----Q--G--S--G---S----F---L-T-R--

-A---T-GILATVFFVTSL--VL--AY-L-S-XGQVTNS--

>A0A1H8RXY5/1-83 [subseq from] A0A1H8RXY5

MAQI-VL-IFHVV-IAIAL-V-V-LVLLQ-H-G-K---G--A--D-A-----G-----A---AF----G-----S--

--G-----A-------S-----S----T--V---F----G---A----R--G--S--A---T----F---L-S-R--

-I---T-AMLAAGFFITSL--TL--AM-F-A-SRDAGPGSV

5. Supported features

JUCHMME provides a simple and user-friendly text input file format for configuration, model

design and model probabilities.

5.1. Determine the Initial Probabilities of the HMM

JUCHMME provides a flexible functionality to parameterize/initialize transition, emission and

weight probabilities. Transition probabilities are required to be provided as input since they

describe the model itself. In the initial transition probabilities table, non-zero entries define the

allowed transitions between states and thus define the model architecture (a transition probability

of zero cannot be undone). Emission probabilities are required in case an HMM is to be used and

are obsolete in case an HNN is to be used. The user can specify in the configuration settings if it

needs to randomize or to uniformize either transition or emission probabilities. Moreover, the user

can choose to initialize probabilities using the Viterbi algorithm on the training data (this is the

suggested option for real-life applications).

Configuration Settings

#PROBABILITIES

FILE, RANDOM, UNIFORM, VITERBI
TRANSITIONS=FILE

FILE, RANDOM, UNIFORM, VITERBI
EMISSIONS=FILE

FILE, RANDOM_NORMAL, RANDOM_UNIFORM, RPROP, BOOT

WEIGHTS=RPROP

5.2. Tying

Another feature is called tying (or parameter sharing), which is used extensively in speech

recognition (the same technique is called ‘weight sharing’ for neural networks). Tying of two states

means that the emission probabilities are always identical in the two states. To keep the number

of parameters at a reasonable level, one could apply tying as commonly done in context-

dependent modeling with standard HMMs. For example, if the M symbol is modeled as a left

context part (M) and a core part (m), one could tie the match networks between the "core states"

across all sub-models (m, M) for the same symbol (M). This would largely decrease the number

of parameters (see section 4.5).

5.3. Training

JUCHMME provides a variety of computationally efficient parameter training algorithms: linear-

memory Baum-Welch training means both for Maximum Likelihood (ML) and for Conditional

Maximum Likelihood (CML), linear-memory Viterbi training, linear-memory posterior sampling

training and Gradient Descent for Conditional Maximum Likelihood (CML).

Traditionally, HMM training is performed using the Baum-Welch algorithm [1-3] which is a special

case of the Expectation-Maximization (EM) algorithm for missing data [4]. Missing data in this

case is the path π (i.e. the sequence of states), since, if we knew the exact path, the Maximum

Likelihood (ML) estimates could be easily derived by counting the observed transitions and

emissions. An alternative to the Baum-Welch algorithm, even though not widely used, is the

gradient-descent algorithm proposed by Baldi and Chauvin [5]. In any case, in these models,

maximization of the likelihood corresponds to an unsupervised learning problem.

In other biological sequence analysis problems, where we want to classify various segments

along the sequence, we often use labeled sequences for training. In such cases, each amino acid

sequence x is accompanied by a sequence of labels y for each position i in the sequence (y=y1,

y2, …,yL). Consequently, we declare a new probability distribution, the probability δk(yi=c) of a

state k having a label c. In most applications, this probability is just a delta-function, since a

particular state is not allowed to match more than one label. Krogh proposed a simple modification

of forward and backward algorithms in order to incorporate information from labeled data [19].

The likelihood to be maximized in such situations is the joint probability of the sequences (x) and

the labels (y) given the model, in which the summation is done only over those paths Πy that are

in agreement with the labels y. This typically corresponds to a supervised learning procedure.

With the use of labeled sequences, we can also perform a kind of discriminative training, with a

criterion known as Conditional Maximum Likelihood (CML). Furthermore, there is no EM algorithm

for training and one has to use general gradient-based methods [11].

Configuration Settings

TRAINING OPTIONS

RUN_CML=false

RUN_GRADIENT=false

HNN=false

ALLOW_BEGIN=true

ALLOW_END=true

RUN_ViterbiTraining=false

threshold=0.02

maxIter=200

Forward and Backward algorithms

The standard Forward (1) and Backward (2) algorithms are employed in the likelihood calculations

in HMMs.

() ()

() () ()

() ()

, 0 : 0 1, 0 0

1 : 1

B k

l l i k kl

k

k kE

k

k B i f f

i L f i e x f i a

P x f L a

  = = =

   = −

=





 (1)

()

() () ()

() () ()1

, :

1 : b 1 1

1

B kE

k kl l i l

k

Bl l l

l

k B i L b L a

i L i a e x b i

P x a e x b

  = =

   = + −

=





 (2)

5.4. Decoding

JUCHMME provides a variety of Algorithms for generating predictions by sequence decoding

using the standard Viterbi (VITERBI) [2] algorithm and also more advanced techniques such as

the N–Best (NBEST) [8], Posterior-Viterbi decoding (POSVIT) [9] and Optimal Accuracy Posterior

Decoder (PLP) [10].

Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm that, contrary to the Forward and

Backward algorithms, finds the likelihood of the most probable path of states and not the total

probability of all paths. With a backtracking step, the algorithm finally recovers the most probable

path. The algorithm is conceptually similar to the Forward algorithm, where the consecutive

summations are replaced by maximizations:

() ()

() () () 

() () max

, 0 : u 0 1,u 0 0

1 : u max 1

, max

B k

l l i k kl
k

k kE

k B i

i L i e x u i a

P x u L a 

  = = =

   = −

=

 (3)

1-best algorithm

The 1-best decoding is a modification of the N-best decoding method, proposed earlier for speech

recognition [38]. It is a heuristic algorithm that tries to find the most probable path of labels (ymax)

of a sequence instead of the most probable path of states. For each position i in the sequence, it

keeps track of all the possible active hypotheses hi-1 that consist of all the possible sequence of

labels up to that point. Afterwards, for each state l, it propagates these hypotheses, appending

each one of the possible labels yi, and picks up the best, until the end of the sequence. In contrast

to the Viterbi algorithm, 1-best does not need a traceback procedure:

() ()

() () ()

() ()

1 1

1

max

1:

1 :

,

l Bl l

l i i l i k i kl

k

k L kE

k

i h a e x

i L h e x h a

P x y h a



  

 

−

= =

   =

=





 (4)

The main drawback of 1-best is that the computation time is significantly longer than Viterbi,

However, the memory requirement is only weakly dependent on sequence length, since it

depends on the number of states in the model. The low memory requirement is particularly useful

when parsing very long sequences, where the simple Viterbi algorithm requires more memory.

Posterior-Viterbi decoding (POSVIT)

Fariselli and co-workers have provided a decoding algorithm that combines elements of the Viterbi

and the posterior decoding [9]. The Posterior-Viterbi decoding algorithm performs essentially a

Viterbi-like decoding, using the Posterior probabilities instead of the emissions and the allowed

paths given by the delta function instead of the transitions.

() ()

() () () () 

() () () 

()

() ()

max

1

1

, 0 : u 0 1,u 0 0

1 : u , max 1 ,

, max ,

1, 0
,

0,otherwise

arg max ,

B k

l i k

k

k

kl

L
PV

i i i

i

k B i

i L i P l x u i k l

P x u L k E

ifa
k l

P x


  

  



    +

=

  = = =

   = = −

=


= 


= 

 (5)

Optimal Accuracy Posterior Decoder algorithm (PLP)

Käll and coworkers presented a very similar algorithm, the Optimal Accuracy Posterior Decoder

which requires class HMMs [10].

() ()

() () () () 

() () () 

()

() () ()1

1

, 0 : 0 0, 0

1 : , max 1 ,

, max ,

1, 0
,

0,otherwise

arg max ,

B k

l

l i k
k

OAPD

k
k

kl

L
OAPD

i i i k

i k

k B i A A

i L A i P c x A i k l

P x A L k E

ifa
k l

P x c


  

  



     +

=

  = = = −

   = = + −

=


= 


  
=   

  
 

 (6)

Configuration Settings

DECODING OPTIONS

VITERBI=true

NBEST=false

DYNAMIC=false

POSVIT=false

PLP=true

5.5. Constrained predictions

This is a simple method that allows incorporation of prior topological information when performing

a constrained prediction [11, 28] .

Configuration Settings

CONSTRAINT=false

We will define the concept of the Information, ω that consists of 1≤r≤L residues of the sequence
x, of which we know the experimentally determined labels, and thus the (a priori) labelling ωi: ω
= ω1, ω2, ...,ωr . According to this terminology, the set of residues with a priori known labels ωr, is
a subset of the set I = (1,2, ...,L) defined by the residues of the sequence. The labels ωi should
belong to the same set of labels defined in the model architecture.

Modified Forward algorithm

() ()

() () ()

() ()

, 0 : 0 1, 0 0

1 : 1

,

k

l k

k

B

l i kl

k

kE

k

k B i f f

i L f i e x f i a

P x f L a

 

 

 

  = = =

   = −

=





 (7)

Modified Backward algorithm

()

() () ()

() () ()1

, :

1 : b 1 1

, 1

B

k l

kE

kl l i

k

Bl l l

l

k B i L b L a

i L i a e x b i

P x a e x b



 

 

  = =

   = + −

=





 (8)

Modified Viterbi algorithm

() ()

() () () 

() () 

, 0 : u 0 1,u 0 0

1 : u max 1

, , max

B k

l k

k

l i kl
k

kE

k B i

i L i e x u i a

P x u L a

 

 

   

  = = =

   = −

=

 (9)

Modified 1-best algorithm

() ()

() () ()

() ()

1 1

1

1:

1 :

,

l

l k

k

Bl l

i i l i i kl

k

L kE

k

i h a e x

i L h e x h a

P x y h a



 

 



  

 

−

= =

   =

=





 (10)

Modified Posterior-Viterbi algorithm

() ()

() () () () 

() () () ,

, 0 : u 0 1,u 0 0

1 : u , , max 1 ,

, , max ,

B k

l k

k

i

k

PV

k B i

i L i P l x u i k l

P x u L k E

 

 

 

   

   

  = = =

   = = −

=

 (11)

Modified Optimal Accuracy Posterior Decoder algorithm

() ()

() () () () 

() () () 

, 0 : 0 0, 0

1 : , , max 1 ,

, , max ,

k

k

B k

l

l i
k

OAPD

k

k B i A A

i L A i P c x A i k l

P x A L k E





   

   

  = = = −

   = = + −

=

 (12)

5.6. Prior probabilities

JUCHMME provides a very flexible way for integrating prior probabilities along the input

sequences into the prediction process; a mapping between the labels of the states in the HMM

and the different types of prior information has to be defined. This was implemented by adding

noise to the model parameters, and then decreasing the level of this noise by prior value per

iteration. For transitions, an optional Boolean attribute defines (PRIOR_TRANS) whether the

annotation label set accepts a prior probability in [0:1]. For emissions, an optional Boolean for

each symbol is defined in Model Settings. Users can define any distribution for each state in an

HMM model. The system takes care of the correct normalization of the prior probabilities. This

means that the sum of the prior probabilities for mutually exclusive annotation labels in one

annotation label set assigned on the same interval of sequence positions has to be at most 1 (and

exactly 1, if the annotation labels of one set cover all possibilities).

New_Α = Α + PRIOR_TRANS * A_initial

New_E = E x PRIOR1 + E_initial x PRIOR2 + PRIOR x PRIOR3

Exception in thread "main" java.lang.Exception: ERROR: Zero probability at

position 1. Symbol: G Obs: I.

Configuration Settings

#PRIOR OPTIONS

NOISE_TR=true

NOISE_EM=true

PRIOR_TRANS=0.001

Model Settings

#MODEL PRIOR for every symbol (esym)

PRIOR = 0.077 0.018 0.058 0.066

Distribution for each state (osym)

Each column must have a sum equal to 1

osym M m O o B E

PRIOR1 = 0.97 0.95 0.97 0.97 0.0 0.0

PRIOR2 = 0.01 0.01 0.01 0.01 0.0 0.0

PRIOR3 = 0.02 0.04 0.02 0.02 0.0 0.0

In other cases, users can write their own function to implement a different functionality.

5.7. Refine

A technique to accommodate misplaced borders in the training data is to ‘dilute’ the labels by

unlabelling a few states at each label boundary (i.e. between loop and membrane regarding

membrane proteins) in order to allow for some freedom in choosing the state and correcting

mislabeled regions. After a model was initially estimated, the labels of the sequences were

deleted in a region flanking a number of residues (i.e. in each direction of the end of a membrane-

spanning segment), and predictions were performed from the relabeled sequences using the

modified Viterbi algorithm presented above, and the model that was estimated from previous step.

This gives a new labeling consistent with the overall structure of the protein, but with the exact

boundaries moved such that it fits the model better, see Figure 2.

Configuration Settings

Refine OPTIONS
FLANK=3

REFINE=true

Fig. 2. Refine method workflow example. The lines after the sequence header show the labeling of the

sequence. The second part shows the labeling after the boundaries have been unlabeled by 3 residues to

each side (unlabeled positions are indicated with a “-”). Finally, a prediction is shown, which was obtained

by forcing the prediction to conform to the labels.

5.8. Statistics

All the prediction algorithms also incorporate the corresponding reliability measures that have

been proposed [13]. For measures of accuracy in case of membrane protein prediction methods

(e.g. HMM-TM and PRED-TMBB2) we used the fraction of the correctly predicted residues in a

two-state mode (Q2), the fraction of proteins with correctly predicted topologies, the segments

over-lap measure (SOV) [14] and the Mathews correlation coefficient (MCC) [39] that summarizes

in a single measure true positives (TP), false positives (FP), true negatives (TN) and false

negatives (FN). In other cases, users can use decoding output to implement their measures.

5.9. Random Sequences Generator

Generation of random sequences according to the specified model.

java hmm/RandomSeq ../tables/A_DEMO ../tables/E_DEMO ../conf/conf.demo ../models/demo.mdel 10

Configuration Settings

#RANDOM SEQUENCE UTILITY

5.10. Multithreaded parallelization for multicores

JUCHMME supports multicore parallelization using Java Fork-Join Framework. By default, our

multithreaded programs will use all available cores on your machine. The user can control the

number of cores each JUCHMME process will use for computation, and disable multithreading in

the configuration file. If you specify PARALLEL=false, the program will run in serial mode. This

might be useful if you suspect something is awry with the threaded parallel implementation.

Multithreaded parallelization for multicores

PARALLEL=true

allCPU=true

nCPU=2

5.11. Multiple sequence alignments

In many protein structure prediction problems, a significant gain in prediction accuracy can be

obtained by incorporating evolutionary information in the form of multiple sequence alignments

(MSAs). The user can pass a Multiple Sequence Alignment file through command line

parameters.

6. Special features / Extensions

Some features listed above are uniquely supported by JUCHMME and we will discuss them briefly

in the following sections.

6.1. Semi-supervised Learning

JUCHMME supports a method for semi-supervised learning of HMMs that can incorporate

labeled, unlabeled and partially-labeled data in a straightforward manner [18]. The algorithm is

based on a variant of the Expectation-Maximization (EM) algorithm, where the missing data are

considered as the missing labels of the unlabeled or partially-labeled data. The algorithm is an

instance of the so-called self-training approach, which is a commonly used technique for semi-

supervised learning [40].

(1) Use the completely labeled data (xl, yl) to train an initial model (θ).

(2) Use θ to predict the labels (y*) of the unlabeled or partially labeled data (xu).

(3) Use the newly labeled data (xu, y*) along with the completely labeled ones (xl, yl) in order to train a
new model (θ*).

Method 1. Use all

Method 2. Use all weighted by a (constant) value of λ<1

Method 3. Use all weighted by P(y*|xu,θ)

Method 4. Use most confident, i.e. those that have reliability less than an optimal threshold

(4) Remove the predicted labels (y*) in order to obtain the initial dataset. Use the new model θ* to replace
θ.

(5) Iterate steps (2)-(4) until convergence.

Fig. 3. A. A schematic illustration of the algorithm. B. The likelihood that is being maximized in the four

variants of the algorithm described in the text.

Configuration Settings

#SEMI-SUPERVISED LEARNING OPTIONS

SSL_ENABLED=true (!important to enable extension)

SSL (standard Semi-supervised Method) or GEM (Generalized EM)

SSL_METHOD=SSL

#1: Use all, 2: Use weight (Constant) for each sequence, 3: Use weight

(Reliability) for each sequence, 4: Use a few most confident

SSL_ADD_METHOD=1

#1:VITERBI, 2:NBEST, 3:POSVIT, 4:PLP

SSL_USING_METHOD=4

SSL_THRESHOLD=0.000002

SSL_maxIter=200

SSL_relscore = 0.95

SSL_WEIGHT=0.2

6.2. Extending HMMs to allow conditioning on previous observations

Instead of having the usual emission probability distribution over letters of the alphabet, we allow

a state to have the emission probability conditioned on the n previous letters in the sequence,

which corresponds to an nth order Markov chain. This extension is useful for modeling coding

regions. Here, we implement a simple extension of the standard HMMs in which the current

observed symbol (amino acid residue) depends both on the current state and on a series of

observed previous symbols [17]. The major advantage of the method is the simplicity in the

implementation, which is achieved by properly transforming the observation sequence, using an

extended alphabet. Notice that the state sequence is still first order, and therefore the HMM

formalism is not altered significantly and all the standard algorithms remain unchanged.

To implement the new encoding, we considered capacity issues, source code compatibility, and

interoperability with other systems. The method comprises of automatic conversion of initial

symbols, according to the standard character encoding Unicode. We use UTF-8 that is memory

efficient and used by many operating systems and programming languages. Starting from the

Latin capital letter A, our method uses serially consecutive Unicode characters to create the new

alphabet. Figure 4 shows the proposed method for converting the parameters, alphabet symbols

and sequences based on the selected encoding. The choice of the symbols used in the new

alphabet is arbitrary and of no particular importance as long as we keep track of the

correspondence. Another issue that should be addressed, after the conversion of the alphabet, is

the number of probabilities of the new model and the size of the respective matrices. The transition

probabilities remain unaltered, while the emission probabilities have to be changed based on the

new encoding. For example, a t-order series requires 20t emission probabilities per state and

thus, depending on the implementation of the HMM, the user has to modify its model accordingly.

Fig. 4. The HMM extension diagram.

JUCHMME supports the following encodings schemes related with protein sequences:

(1) An Encoding with 40 (20x2) symbols depending on whether the previous residue is

hydrophobic (A, F, H, I, L, M, V, W, Y) or non-hydrophobic (C, D, E, G, K, N, P, Q, R, S, T).

(Encoding 1).

(2) An Encoding with 80 (20x4) symbols depending on whether the previous residue is:

Hydrophobic–Aromatic (F, H, Y, W), Hydrophobic–non-Aromatic (A, I, L, M, V, G), non-

Hydrophobic–Charged (D, E, K, R), non-Hydrophobic–Polar (C, N, P, Q, S, T). (Encoding 2).

(3) An Encoding with 160 (20x8) symbols depending on whether the previous residue is:

Hydrophobic–Small (A, G), Polar–Special (P, C), Polar–OH (S, T), Polar–NH (N, Q),

Charged–Negative (D, E), Charged–Positive (K, R), Hydrophobic–Huge (I, L, M, V) and

Hydrophobic–Aromatic (F, H, Y, W). (Encoding 3).

(4) An Encoding with 400 (20x20) symbols that takes into account all possible dipeptide

combinations. (Encoding 4).

Configuration Settings

#EXTENDED PAST OBSERVATIONS

PAST_OBS_EXTENSION=true (!important to enable extension)

#1=40, 2=80, 3=160, 4=400

ENCODE_TYPE=1

GROUP_SYMBOLS = 10

GROUPING=10001011011000000111

PAST_OBS_NO = 1

The user can choose one of the above encodings. In addition, JUCHMME provides the user with

the ability to define their own encoding by defining the value 0 to the parameter ENCODE_TYPE

and defining their own encoding scheme with the parameters GROUP_SYMBOLS and

GROUPING.

For instance, to define an encoding with six groups, use the value 123456 which corresponds

• 1 for Group-1

• 2 for Group-2

• 3 for Group-3

• 4 for Group-4

• 5 for Group-5

• 6 for Group-6

And finally define in parameter GROUPING which group corresponds each letter of the alphabet.

For instance, in the case of proteins, an observed sequence is composed by a discrete set of 20

symbols, following the alphabetical order of single-letter codes for the 20 amino acids: A, C, D, E,

F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. In this case, the value will be

14431221561552443111.

Configuration Settings

#EXTENDED PAST OBSERVATIONS

PAST_OBS_EXTENSION=true (!important to enable extension)

#1=40, 2=80, 3=160, 4=400

ENCODE_TYPE=0

GROUP_SYMBOLS = 123456

GROUPING=14431221561552443111

PAST_OBS_NO = 1

6.3. Hidden Neural Network (HNN)

Hidden Neural Network (HNN) is a general framework for hybrid Hidden Markov models (HMMs)

and neural networks (NNs). The implementation of the hybrid system follows Krogh and Riis [16]

framework. The basic idea in the Hidden Neural Network model is that the standard probability

parameters of a CHMM are replaced by the outputs of neural networks assigned to each state.

The network input wi corresponding to xi will usually be a window of context around xi. Defines

the left (L) and right (R) the window can be

(1) L=R, L>0, R>0, a symmetrical context window of (L + R) + 1 observations, xi-L, …, xi, …,

xi+R.

(2) L≠R, L>0, R>0, an asymmetric context window of (L + R) + 1 observations, xi-L, …, xi, …,

xi+R.

(3) L≠R, L>0, R=0, a left context window of (L + 1) observations, xi-L, …, xi.

(4) L≠R, L=0, R>0, a right context window of (R + 1) observations, xi, …, xi+R.

The initialization of the weights is implemented using the JOONE (Java Object Oriented Neural

Network) library (http://www.joone.org/) which is a Java framework to build and run AI applications

based on neural networks.

The HNN framework uses feed-forward multilayer perceptron networks which are trained with the

back-propagation algorithm. The network architecture, currently, consists of one hidden layer,

one output layer and an input layer that consists of the current residue of a preset symmetrical or

asymmetric window size, according to a SPARCE encoding and/or another form of a BLOSUM

encoding. For the hidden layer activation function, the user can choose among Sigmoid (13),

modified sigmoid (14) and hyperbolic tangent function, that limits its output within the range –1

and +1 (15). As for the output level, the activation function selected is the sigmoid function (13),

since it has a range of values in the interval (0,1) and therefore fulfills the criteria so that its effect

can reflect the possibility of an amino acid.

 ()
1

1 x
y h x

e−
= =

+
 (13)

 ()
1 1

1 2x
y h x

e−
= = −

+
 (14)

 ()
x x

x x

e e
y h x

e e

−

−

−
= =

+
 (15)

Moreover, for network training it uses two different error functions, the root-mean-square error

(RMSE) and Cross Entropy (CE). The neural network stops the training epochs, when it finishes

a number of cycles or when the value of the global error changes during the training phase less

than a predefined cutoff.

Configuration Settings

TRAINING OPTIONS

RUN_CML= true (!important to enable Conditional Maximum Likelihood Learning)

RUN_GRADIENT=true

HNN= true (!important to enable HNN extension)

#HNN OPTIONS

windowLeft=3

windowRigth=3

nhidden=3

ADD_GRAD=0.0

DECAY=0.001

#1: Sigmoid, 2: Sigmoid Modified, 3: Tanh

hiddenLayerFunction=2

#BOOTSTRAP OPTIONS (HNN ONLY)

BOOT=0

http://www.joone.org/

STDEV=1.5

RANGE=5.0

SEED=568381

WEIGHT_RAND=0.0

WEIGHT_TIME=false

#RPROPNN OPTIONS (HNN ONLY)

numberOfCycles=50

doCrossVal=true

crossValIte=5

minGEdiff=0

globalError=CE

initialDelta= 0.1

maxDelta=50

minDelta=1e-6

etaInc=1.2

etaDec=0.5

7. Examples

JUCHMMER has already been used in a number of important biological problems. The

JUCHMME software package comprises several examples with all the necessary input and output

files. The following examples illustrate the range of features supported by JUCHMME.

7.1. PRED-TMMB

This HMM can be used to predict the topology of transmembrane β-barrels [27, 41].

This example shows how parameter training with JUCHMME works.

Self-consistency

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train -s

Jackknife

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train -j

k-fold Cross-validation (k=10)

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train -v 10

HNN Self-consistency (RPROP Method for initialize Weights)

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -w

../tables/W_PREDTMBB2_MYMODEL -c ../conf/conf.tmbb -m ../models/tmbb.mdel -x

../tables/SPARCE -t ../input/TRAIN_SET_49_ALL.for_train -s

Training

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train

Testing

java -Xmx1024m hmm/Juchmme -a ../tables/A_TMBB2_TRAINED -e

../tables/E_TMBB2_TRAINED -c ../conf/conf.tmbb -m ../models/tmbb.mdel -f ../input/

TRAIN_SET_49_ALL.fasta

Testing using previous knowledge

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/A_TMBB2_TRAINED -e

../tables/E_TMBB2_40_TRAINED -c ../conf/conf.tmbb -m ../models/tmbb.mdel -f ../input/PRED-

TMBB2_newSet_40.seq

7.2. HMM-TM

This HMM can be used to predict α-helical transmembrane proteins [11].

This example shows how parameter training with JUCHMME works.

Self-consistency

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL -e ../tables/E_HELICAL -c

../conf/conf.hmmtm -m ../models/hmmtm.mdel -t ../input/hmmtm_train_set.3line -s

Jackknife

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL -e ../tables/E_HELICAL -c

../conf/conf.hmmtm -m ../models/hmmtm.mdel -t ../input/ hmmtm_train_set.3line -j

Training

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL -e ../tables/E_HELICAL -c

../conf/conf.hmmtm -m ../models/hmmtm.mdel -t ../input/ hmmtm_train_set.3line

Testing

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL_TRAINED -e

../tables/E_HELICAL_TRAINED -c ../conf/conf.hmmtm -m ../models/hmmtm.mdel -f

../input/hmmtm_test_set.fasta

Testing using previous knowledge

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/A_HELICAL_TRAINED -e

../tables/E_HELICAL_40_TRAINED -c ../conf/conf. hmmtm -m ../models/hmmtm.mdel -f

../input/hmmtm_train_set.3line

7.3. PRED-TAT

This HMM can be used to predict twin-arginine and secretory signal peptides [42].

This example shows how parameter training with JUCHMME works.

Self-consistency

java -Xmx4096m hmm/Juchmme -a ../tables/A_TAT -e ../tables/E_TAT -c ../conf/conf.tat -m

models/tat.mdel -t ../input/TAT_Train_Set.crossval -s

k-fold Cross-validation (k=31)

java -Xmx4096m hmm/Juchmme -a ../tables/A_TAT -e ../tables/E_TAT -c ../conf/conf.tat -m

../models/tat.mdel -t ../input/TAT_Train_Set.crossval -v 31

Training

java -Xmx4096m hmm/Juchmme -a ../tables/A_TAT_TRAINED -e ../tables/E_TAT_TRAINED -c

../conf/conf.tat -m models/tat.mdel -t ../input/TAT_Test_Set.fasta

Testing

java -Xmx1024m hmm/juchmme -a ../tables/ A_TAT_TRAINED -e ../tables/ E_TAT_TRAINED -c

../conf/conf.tat -m ../models/tat.mdel -f ../input/ TAT_Train_Set_ALL.fasta

Testing using previous knowledge

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/ A_TAT_TRAINED -e

../tables/ E_TAT_40_TRAINED -c ../conf/conf.tat -m ../models/tat.mdel -f ../input/
TAT_Test_Set.fasta

7.4. PRED-LIPO

This HMM can be used to predict lipoprotein signal peptides in Gram-positive bacteria [23].

This example shows how parameter training with JUCHMME works.

Self-consistency

java -Xmx4096m hmm/Juchmme -a ../tables/A_LIPO -e ../tables/E_LIPO -c ../conf/conf.lipo -m

../models/lipo.mdel -t ../input/LIPO_Train_Set.seq -s

k-fold Cross-validation (k=11)

java -Xmx4096m hmm/Juchmme -a ../tables/A_LIPO -e ../tables/E_LIPO -c ../conf/conf.lipo -m

../models/lipo.mdel -t ../input/LIPO_Train_Set.seq -v 11

Training

java -Xmx4096m hmm/Juchmme -a ../tables/A_LIPO_TRAINED -e ../tables/E_LIPO_TRAINED

-c ../conf/conf.lipo -m ../models/lipo.mdel -f ../input/LIPO_Test_Set.fasta

7.5. PRED-SIGNAL

This HMM can be used to predict signal peptides in archea [22].

This example shows how parameter training with JUCHMME works.

Self-consistency

java -Xmx4096m hmm/Juchmme -a ../tables/A_ARCHAEA -e ../tables/E_ARCHAEA -c

../conf/conf.signal -m ../models/signal.mdel -t ../input/ARCHAEA_Train_Set.seq -s

k-fold Cross-validation (k=9)

java -Xmx4096m hmm/Juchmme -a ../tables/A_ARCHAEA -e ../tables/E_ARCHAEA -c

../conf/conf.signal -m ../models/signal.mdel -t ../input/Signal-ver+ref_shuffled68.seq -v 9

Training

java -Xmx4096m hmm/Juchmme -a ../tables/A_ARCHAEA -e ../tables/E_ARCHAEA -c

../conf/conf.signal -m ../models/signal.mdel -t ../input/Signal-ver+ref_shuffled68.seq

7.6. LPXTG

This HMM can be used to predict the LPXTG and LPXTG-like cell-wall proteins of Gram-positive

bacteria [43].

Testing

java -Xmx4096m hmm/Juchmme -a ../tables/A_LPX -e ../tables/E_LPX -c ../conf/conf.tmbb -m

../models/lpxtg.mdel -f ../input/LPXTG_Test_Set.fasta

7.7. HMMpTM

This HMM can be used to predict the topology of transmembrane proteins and the existence of

kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence

[44].

Testing

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL_PTM_v6 -e

../tables/E_HELICAL_PTM_v6 -c ../conf/conf.hmmptm -m ../models/hmmptm.mdel -f

../input/hmmptm_test_set.fasta

Testing using previous knowledge

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables//A_HELICAL_PTM_v6 -e

../tables/ E_HELICAL_PTM_v6 -c ../conf/conf. hmmptm -m ../models/hmmptm.mdel -f

../input/hmmptm_train_set.3line

7.8. DEMO

A demo model which describes the so-called Class HMM (CHMM)

Fig. 5. Left. A schematic illustration of a very simple model with four states, two with label (M) and two

with label (O). The model includes also begin (B) and end (E) states. The model uses multiple label states.

Right. An example observation sequence x=x1, x2, …,x12 with complete labels and the multiple label states.

The grey areas of the matrix are calculated as in the standard HMM algorithms whereas f is set to zero in

the white areas.

Random Sequences Creator

java hmm/RandomSeq ../tables/A_DEMO ../tables/E_DEMO ../conf/conf.demo

../models/demo.mdel 100 > demoSet.seq

Self-consistency

java -Xmx4096m hmm/Juchmme -a ../tables/A_DEMO -e ../tables/E_DEMO -c

../conf/conf.demo -m ../models/demo.mdel -t ../input/demoSet.seq -s

k-fold Cross-validation (k=9)

java -Xmx4096m hmm/Juchmme -a ../tables/A_DEMO -e ../tables/E_DEMO -c

../conf/conf.demo -m ../models/demo.mdel -t ../input/ demoSet.seq -v 9

Training

java -Xmx4096m hmm/Juchmme -a ../tables/A_DEMO -e ../tables/E_DEMO -c

../conf/conf.demo -m ../models/demo.mdel -t ../input/demoSet.seq

8. Future developments

Training, decoding and applying HMMs are subjects of active research in our lab, and thus

JUCHMME will be continuously updated.

Web edition: Additionally, we are planning to construct a simple and user-friendly web interface

that will allow the design of input parameter files in a graphical environment. A graphical illustration

of the model will help people towards better understanding of the biological problem and HMM

structure of the model, and will be especially useful for educational purposes.

New algorithms: We are planning on implementing new and advanced algorithms, like linear
memory EM and Viterbi algorithms [45], linear-memory Baum-Welch training [46], efficient
algorithms for training the parameters of Hidden Markov Models using stochastic expectation
maximization (EM) training and Viterbi training [47]. Finally, we are working with other types of
extensions to the standard HMM architecture, either by allowing silent states or by introducing
novel hybrid HMM methods.

References

1. Baum, L.E., An equality and associated maximization technique in statistical estimation for
probabilistic functions of Markov processes. Inequalities, 1972. 3: p. 1-8.

2. Durbin, R., et al., Biological sequence analysis: probabilistic models of proteins and nucleic
acids. 1998: Cambridge university press.

3. Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 1989. 77(2): p. 257-286.

4. Dempster, A.P., N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via
the EM algorithm. Journal of the royal statistical society. Series B (methodological), 1977:
p. 1-38.

5. Baldi, P. and Y. Chauvin, Smooth on-line learning algorithms for hidden Markov models.
Neural Computation, 1994. 6(2): p. 307-318.

6. Juang, B.-H. and L.R. Rabiner, The segmental K-means algorithm for estimating
parameters of hidden Markov models. IEEE Transactions on acoustics, speech, and signal
Processing, 1990. 38(9): p. 1639-1641.

7. Bagos, P.G., T.D. Liakopoulos, and S.J. Hamodrakas. Faster gradient descent training of
hidden Markov models, using individual learning rate adaptation. in International Colloquium
on Grammatical Inference. 2004. Springer.

8. Krogh, A., Two methods for improving performance of an HMM and their application for
gene finding. Center for Biological Sequence Analysis. Phone, 1997. 45: p. 4525.

9. Fariselli, P., P.L. Martelli, and R. Casadio, A new decoding algorithm for hidden Markov
models improves the prediction of the topology of all-beta membrane proteins. BMC
bioinformatics, 2005. 6(4): p. S12.

10. Käll, L., A. Krogh, and E.L. Sonnhammer, An HMM posterior decoder for sequence feature
prediction that includes homology information. Bioinformatics, 2005. 21(suppl_1): p. i251-
i257.

11. Bagos, P.G., T.D. Liakopoulos, and S.J. Hamodrakas, Algorithms for incorporating prior
topological information in HMMs: application to transmembrane proteins. BMC
bioinformatics, 2006. 7(1): p. 189.

12. Melen, K., A. Krogh, and G. von Heijne, Reliability measures for membrane protein topology
prediction algorithms. Journal of molecular biology, 2003. 327(3): p. 735-744.

13. Baldi, P., et al., Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics, 2000. 16(5): p. 412-424.

14. Zemla, A., et al., A modified definition of Sov, a segment‐based measure for protein
secondary structure prediction assessment. Proteins: Structure, Function, and
Bioinformatics, 1999. 34(2): p. 220-223.

15. Theodoropoulou, M.C., I. Mintsopoulos, and P.G. Bagos, Viterbi training of Hidden Markov
Models for labeled sequences, in Joint 25th Annual International Conference on Intelligent
Systems for Molecular Biology (ISMB) and 16th European Conference on Computational
Biology (ECCB). 2017.

16. Krogh, A. and S.K. Riis, Hidden neural networks. Neural Computation, 1999. 11(2): p. 541-
563.

17. Tamposis, I.A., et al., Extending Hidden Markov Models to Allow Conditioning on Previous
Observations. Journal of Bioinformatics and Computational Biology, 2018.

18. Tamposis, I.A., et al., Semi-supervised learning of Hidden Markov Models for biological
sequence analysis. Bioinformatics, 2018: p. bty910-bty910.

19. Krogh, A. Hidden Markov models for labeled sequences. in Pattern Recognition, 1994. Vol.
2-Conference B: Computer Vision & Image Processing., Proceedings of the 12th IAPR
International. Conference on. 1994. IEEE.

20. Böer, J., Multiple alignment using hidden Markov models. proteins. 4: p. 14.
21. Nielsen, H. and A.S. Krogh. Prediction of signal peptides and signal anchors by a hidden

Markovmodel. in Sixth International Conference on Intelligent Systems for Molecular
Biology. 1998. AAAI Press.

22. Bagos, P., et al., Prediction of signal peptides in archaea. Protein Engineering Design and
Selection, 2009. 22(1): p. 27-35.

23. Bagos, P.G., et al., Prediction of lipoprotein signal peptides in Gram-positive bacteria with
a Hidden Markov Model. Journal of proteome research, 2008. 7(12): p. 5082-5093.

24. Juncker, A.S., et al., Prediction of lipoprotein signal peptides in Gram‐negative bacteria.
Protein Science, 2003. 12(8): p. 1652-1662.

25. Litou, Z.I., et al., Prediction of cell wall sorting signals in gram-positive bacteria with a hidden
markov model: application to complete genomes. Journal of bioinformatics and
computational biology, 2008. 6(02): p. 387-401.

26. Asai, K., S. Hayamizu, and K.i. Handa, Prediction of protein secondary structure by the
hidden Markov model. Bioinformatics, 1993. 9(2): p. 141-146.

27. Bagos, P.G., et al., A Hidden Markov Model method, capable of predicting and
discriminating β-barrel outer membrane proteins. BMC bioinformatics, 2004. 5(1): p. 29.

28. Krogh, A., et al., Predicting transmembrane protein topology with a hidden markov model:
application to complete genomes1. Journal of molecular biology, 2001. 305(3): p. 567-580.

29. Bagos, P.G., T.D. Liakopoulos, and S.J. Hamodrakas, Evaluation of methods for predicting
the topology of β-barrel outer membrane proteins and a consensus prediction method. BMC
bioinformatics, 2005. 6(1): p. 7.

30. Möller, S., M.D. Croning, and R. Apweiler, Evaluation of methods for the prediction of
membrane spanning regions. Bioinformatics, 2001. 17(7): p. 646-653.

31. Viklund, H. and A. Elofsson, Best α‐helical transmembrane protein topology predictions are
achieved using hidden Markov models and evolutionary information. Protein Science, 2004.
13(7): p. 1908-1917.

32. Jones, D.T., W.R. Taylor, and J.M. Thornton, A model recognition approach to the prediction
of all-helical membrane protein structure and topology. Biochemistry, 1994. 33(10): p. 3038-
49.

33. Fariselli, P., et al., MaxSubSeq: an algorithm for segment-length optimization. The case
study of the transmembrane spanning segments. Bioinformatics, 2003. 19(4): p. 500-5.

34. Jones, D., W. Taylor, and J. Thornton, A model recognition approach to the prediction of
all-helical membrane protein structure and topology. Biochemistry, 1994. 33(10): p. 3038-
3049.

35. Martelli, P.L., et al., A sequence-profile-based HMM for predicting and discriminating β
barrel membrane proteins. Bioinformatics, 2002. 18(suppl_1): p. S46-S53.

36. Riedmiller, M. and H. Braun. RPROP-A fast adaptive learning algorithm. in Proc. of ISCIS
VII), Universitat. 1992. Citeseer.

37. Krogh, A. and J.A. Hertz. A simple weight decay can improve generalization. in Advances
in neural information processing systems. 1992.

38. Schwartz, R. and Y.-L. Chow. The N-best algorithm: An efficient and exact procedure for
finding the N most likely sentence hypotheses. in Proc. ICASSP. 1990.

39. Matthews, B.W., Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975. 405(2): p.
442-451.

40. Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods. in
Proceedings of the 33rd annual meeting on Association for Computational Linguistics. 1995.
Association for Computational Linguistics.

41. Tsirigos, K.D., A. Elofsson, and P.G. Bagos, PRED-TMBB2: improved topology prediction
and detection of beta-barrel outer membrane proteins. Bioinformatics, 2016. 32(17): p. i665-
i671.

42. Bagos, P.G., et al., Combined prediction of Tat and Sec signal peptides with hidden Markov
models. Bioinformatics, 2010. 26(22): p. 2811-2817.

43. Fimereli, D.K., et al. CW-PRED: a HMM-based method for the classification of cell wall-
anchored proteins of Gram-positive bacteria. in Hellenic Conference on Artificial
Intelligence. 2012. Springer.

44. Tsaousis, G.N., P.G. Bagos, and S.J. Hamodrakas, HMMpTM: improving transmembrane
protein topology prediction using phosphorylation and glycosylation site prediction.
Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014. 1844(2): p. 316-322.

45. Churbanov, A. and S. Winters-Hilt, Implementing EM and Viterbi algorithms for Hidden
Markov Model in linear memory. BMC bioinformatics, 2008. 9(1): p. 224.

46. Miklós, I. and I.M. Meyer, A linear memory algorithm for Baum-Welch training. BMC
bioinformatics, 2005. 6(1): p. 231.

47. Lam, T.Y. and I.M. Meyer, Efficient algorithms for training the parameters of hidden Markov
models using stochastic expectation maximization (EM) training and Viterbi training.
Algorithms for Molecular Biology, 2010. 5(1): p. 38.

