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1. Introduction 

JUCHMME, an acronym for Java Utility for Class Hidden Markov Models and Extensions is a tool 

developed for biological sequence analysis. 

The overall aim of this work has been to develop a software tool that would offer a large collection 

of standard algorithms of Hidden Markov Models (HMMs), as well as, a number of extensions and 

to evaluate the software applied to various biological problems. The JUCHMME framework is 

characterized by: 

Flexibility: Ease of use and customization for various problems. The user can create models of 

any architecture and any alphabet (DNA, protein or other), without requiring any 

programming capabilities (all required settings are defined in a configuration file). 

Training methods: JUCHMME integrates a wide range of training algorithms for HMMs for labeled 

sequences. These kind of models are often referred to as “class HMMs” and are commonly 

trained using the Maximum Likelihood (ML) criterion to model within-class data 

distributions. The tool has been developed to support the Baum-Welch algorithm [1-3] and 

its extension that is necessary to handle labeled data [4]. Other alternatives are also 

supported, like the gradient-descent algorithm proposed by Baldi and Chauvin [5] and the 

Viterbi training (also known as “segmental K-means”) [6]. Additionally, the Conditional 

Maximum Likelihood (CML) criterion, which corresponds to discriminative training, is also 

supported. The CML training can be performed only with gradient based algorithms, and 

to this end a fast and robust algorithm for individual learning rate adaptation has been 

implemented [7]. The same algorithm is available for training the Hidden Neural Networks 

(HNN, see below). 

Decoding: A wide range of decoding algorithms are integrated such as Viterbi, N–Best [8], 

posterior–Viterbi [9] and Optimal Accuracy Posterior Decoder [10]. Moreover, decoding of 

partially labeled data is offered with all algorithms in order to allow incorporation of 

experimental information [11]. 

Training Procedures: It contains built-in model creation and evaluation procedures, such as 

options for independent tests, self-consistency tests, jacknife tests, k–fold cross-validation 

and early stopping. All the prediction algorithms also incorporate appropriate reliability 

measures [12] and performance indices that have been widely used [13, 14] (such as  the 

correlation coefficient, Q, or SOV). 

HMM Extensions: To overcome standard HMM and class HMM limitations, a number of 

extensions have been developed such as segmental k–means (Viterbi training) for labeled 

sequences both for Maximum Likelihood (ML) [6] and for Conditional Maximum Likelihood 

(CML) training [15], Hidden Neural Networks (HNNs) [16], models that condition on 

previous observations [17] and a method for semi-supervised learning of HMMs that can 

incorporate labeled, unlabeled and partially-labeled data (semi–supervised learning) [18]. 

 

 

 



What HMMs are 

Hidden Markov Models (HMMs) are probabilistic models. HMMs are generative models and in 

their basic formulation operate in an unsupervised manner, since they simply describe a finite 

mixture of multinomial distributions, where the mixture probabilities form a 1st order Markov chain. 

In this setting, during the training phase we maximize P(x|θ), which is the probability of the data 

given the model, whereas in the decoding phase we recover the hidden sequence of states that 

are most likely to have generated the data. In this manner, the only “supervision” needed is that 

of providing a reliable set of homologous sequences. When there is a need to compare different 

competing models, supervision is used indirectly, i.e. we train the different models separately and 

in the testing phase we simply choose the one with the highest probability (i.e. in a database 

search). In other applications, such as structure prediction, a sequence of labels (y) is tied to each 

observation sequence (x), corresponding to the different attributes that we wish to predict. In this 

case, we usually maximize P(x,y|θ), which is the joint probability of the sequences and the labels 

given the model, or P(y|x,θ), which is the probability of labels given the sequences and the model. 

These approaches typically correspond to a supervised learning procedure where each sequence 

x is accompanied by a complete sequence of well-defined labels y. 

Applications of HMMs 

The Hidden Markov Models (HMMs) are one of the most successful modeling approaches in 

speech recognition [3]. During the past two decades they were successfully applied on various 

tasks in computational molecular biology where they were proven to be useful for several 

problems in biological sequence analysis [2]. These include gene finding [19], multiple sequence 

alignment [20], prediction of signal peptides [21, 22], prediction of bacterial lipoproteins [23, 24], 

prediction of cell-wall sorting signals [25], prediction of protein secondary structure [26] and 

prediction of transmembrane protein topology [27, 28]. In several of these applications such as 

topology prediction of transmembrane proteins, HMMs have been found to perform significantly 

better compared to other sophisticated Machine-Learning techniques (e.g. Neural Networks or 

Support Vector Machines), as demonstrated in several evaluation studies [29-31]. 

A general definition of HMMs and an excellent tutorial introduction to their use has been written 

by Rabiner [3]. This shorthand usage is for convenience only.  For a review of Class HMMs, see 

[19] and for a complete book on the subject of probabilistic modeling in computational biology, 

see [2]. 

2. Getting started  

JUCHMME is a Java executable that can be run from the command line. JUCHMME is written in 

Java and requires a 32-bit or 64-bit Java runtime environment version 7 or later, freely available 

from http://www.java.org. The Windows and MacOS X installers contain a suitable Java runtime 

environment that will be used if a suitable Java runtime environment cannot be found on the 

computer. 

Download the program from http://www.compgen.org/tools/juchmme  or Github 

https://github.com/pbagos/juchmme .  

Compile:  

javac -XDignore.symbol.file -sourcepath src/ -d ./bin src/hmm/Juchmme.java 

http://www.java.org/
http://www.compgen.org/tools/juchmme
https://github.com/pbagos/juchmme


javac -XDignore.symbol.file -sourcepath src/ -d ./bin src/hmm/RandomSeq.java 

javac -XDignore.symbol.file -sourcepath src/ -d ./bin src/nn/Main.java 

 

Libraries and other installation requirements: 

JUCHMME includes a software library called JOONE (Java Object Oriented Neural Network) 

library (http://www.joone.org/) which is a Java framework to build and run AI applications based 

on neural networks, which it will automatically compile during its installation process.  By default, 

JUCHMME does not require any additional libraries to be installed by you. 

 

3. Arguments and Options  

The juchmme program provides a list of command-line arguments and options.  

− V: print JUCHMME version and exit 

− a: the free emission parameter file (see section 4.4). This parameter file is required. 

− e: the free transition parameter file (see section 4.3) 

− i: the input sequence three-line file. This file stores the input sequences for decoding or training 

algorithms in a three-line format (see section 4.2).  

− f: the input sequence FASTA file. This file stores the input sequences for decoding algorithms 

in FASTA format (see section 4.1).  

− A: the input Multiple Sequence Alignment FASTA file. This file stores the input Multiple 

sequence Alignment (MSA) in for decoding algorithms in one line FASTA format (see section 

4.10).  

− m: the model file (see section 4.5). This parameter file is required. 

− w: the HNN weights parameter file (see section 4.7)  

− x: the HNN encoding file (see section 4.6) 

− t: Training option 

− c: the configuration file (see section 4.8) 

− v cluster size: k–fold cross-validation mode using an integer larger than 0 for cluster size (for 

instance clusterSize=175) 

− k number of clusters: k–fold cross-validation mode using an integer larger than 0 for k (for 

instance k=10) 

− s: self-consistency test 

− j: jacknife test 

− p: show plot 

− P: plot directory 

  

By default, JUCHMME uses memory mapping to access its index files. If you intend to align a 

large number of files in a single run of JUCHMME, then it may be more efficient to have the 

program preload the complete index. To achieve this, use the command-line java option –Xmxn. 

-Xmxn 

http://www.joone.org/


Specify the maximum size, in bytes, of the memory allocation pool. This value must be a multiple 

of 1024 and greater than 2MB. Append the letter k or K to indicate kilobytes, or m or M to indicate 

megabytes. The default value is 64MB. The upper limit for this value will be approximately 4000m 

on Solaris 7 and Solaris 8 SPARC platforms and 2000m on Solaris 2.6 and x86 platforms, minus 

overhead amounts. Examples: 

               -Xmx83886080 

               -Xmx81920k 

               -Xmx80m 

If you intend to use the extension of encoding (see section 5.2), the proposed method comprises 

of automatic conversion of initial symbols, according to the standard character encoding Unicode, 

using UTF-8 that is memory efficient and used by many operating systems and programming 

languages. To achieve this, use the command-line java option –Dfile.encoding=UTF-8. 

java -Xmx4096m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/A_TMBB2 -e 

../tables/E_TMBB2 -c ../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/barels_10LA.seq -d 

../input/barrels14_seqs.txt 

Random Sequence utility 

Given a model, JUCHMME can generate a set of random sequences. This option can be useful 

for testing purposes. The user needs to provide the number of the sequences along with the 

transition, emission and configuration files for the given model. 

java hmm/RandomSeq ../tables/A_TMBB2 ../tables/E_TMBB2 ../conf/conf.tmbb 

../models/tmbb.mdel 100 

 

4. Input/output files 

4.1. The input sequence FASTA file 

This file stores the input sequences for decoding algorithms in a FASTA-like format. The following 

is an example of an input sequence file: 

>22 COXH_BOVIN   

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK 

 

4.2. The input sequence three-line file 

This file stores the input sequences for decoding or training algorithms in a three-line FASTA 

format. The following is an example of an input sequence file: 

>22 COXH_BOVIN   

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK 

IIIIIIIIIIIIIIIIMMMMMMMMMMMMMMMMMMMMMMMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

 



The first line has the FASTA header line, the second line has the observed sequence and the 

third line has the labels. If semi-supervised learning is used for training, the sequences in the 

input three-line file can contain unlabeled sequences (missing observations). The observation line 

followed by the character “-” for each amino acid like the following example:  

>22 COXH_BOVIN   

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK 

------------------------------------------------------------------------- 

 

or partially-labeled sequences like the following example:   

>22 COXH_BOVIN   

STALAKPQMRGLLARRLRFHIVGAFMVSLGFATFYKFAVAEKRKKAYADFYRNYDSMKDFEEMRKAGIFQSAK 

----------------MMMMMMM-------MMMMMMMMMOOOOOOOOO------------------------- 

 

4.3. The free transition parameter file 

This file defines the free transition parameters and is required for setting up the transition 

probabilities of an HMM. All free transition parameters are stored in this file. We specify a free 

transition parameter for a 4-state HMM including begin (B) and end (E) states (see section 7.8) 

with the following format: 

0.000 0.800 0.200 0.000 0.000 0.000 

0.000 0.750 0.250 0.000 0.000 0.000 

0.000 0.150 0.550 0.300 0.000 0.000 

0.000 0.000 0.000 0.550 0.200 0.100 

0.000 0.100 0.000 0.230 0.520 0.150 

0.000 0.000 0.000 0.000 0.000 0.000 

 

For a 4-state HMM model including begin (B) and end (E) states we need a file with 6 (lines) x 6 

(columns). The six columns should be separated by a space or a tab character. The default value 

for the pseudo-probabilities is 0. In this free transition parameter file, each line represents one 

free transition parameter. Each line must sum to 1.     

 

4.4. The free emission parameter file 

This text file is required for setting up the emission probabilities of an HMM. We call a grouped 

set of emission probabilities which defines the emission probabilities for a state in the HMM a free 

emission parameter. All free emission parameters are stored in this file. We specify a free 

emission parameter for a 4-state HMM including begin (B) and end (E) states (see section 7.8) 

with the following format: 

0.000 0.000 0.000 0.000 

0.055 0.002 0.017 0.007 

0.068 0.001 0.058 0.063 

0.123 0.001 0.011 0.005  

0.068 0.021 0.058 0.063  

0.000 0.000 0.000 0.000 

 



In the case of DNA for instance, an observed sequence is composed by a discrete set of 4 

symbols, following the single-letter codes for the 4 nucleotides: A, C, G, T. For a 4-state HMM 

including begin (B) and end (E) states model we need a file with 4 (lines) x 6 (columns). The four 

columns should be separated by a space or a tab character. 

 

4.5. The HMM model file 

The models used by JUCHMME are described in files written in simple text format using 

straightforward conventions. It is easy to write, understand and modify them, or to create them 

using a separate program. This text file is required for setting up the model design. We specify a 

model file for an HMM with four states (B0, M1, M2, O1, O2, E0) two with label (M) and two with 

label (O). The model includes also begin (B) and end (E) states (see section 7.8). 

# MODEL OPTIONS 

MODEL=DEMO 

 

ESYM=AGCT 

OSYM=MmOoBE 

PSYM=MOBE 

 

#Model Unique Labels 

transmLabels=M 

inLabels=I 

outLabels=O 

 

#Model states and labels 

STATE=B0 M1 M2 O1 O2 E0 

OSTATE=B   M   m   O   o   E 

PSTATE=B   M   M   O   O   E 

 

#MODEL PRIOR for every esym 

PRIOR = 0.077 0.018 0.058 0.066 

 

# Distribution for each osym 

# Each column must have a sum equal to 1 

# osym    M     m    O    o   B   E 

PRIOR1 = 0.97 0.97 0.97 0.95 0.0 0.0 

PRIOR2 = 0.01 0.01 0.01 0.01 0.0 0.0 

PRIOR3 = 0.02 0.02 0.02 0.04 0.0 0.0 

 

OSYM represents the Alphabet of the observations. 

OSYM represents the Alphabet of the “tied” states (parameter tying) (see section 5.2). 

PSYM represents the Alphabet of the Labels. 

STATE represents the model states.  

OSTATE represents the “tied” states (parameter tying) (see section 5.2). 

PSTATE represents the label for each state. Here we limit HMM models to one label for each 

state, which is probably the most useful approach for most known problems. 



JUCHMME provides a very flexible way of integrating prior probabilities along the input sequences 

into the prediction process; a mapping between the labels of the states in the HMM and the 

different types of prior information has to be defined (see section 5.6). 

 

4.6. The HNN Encoding parameter file 

This text file is required for setting up the encoding of an HNN. 

Array representation of Binary (SPARCE) Encoding Table. Refer to the below matrix for 

corresponding amino acids. 

1   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   1   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   1 0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 1   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   1   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   1 0   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 1   0   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   1   0 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   1 0   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 1   0   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   1   0 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   1 0   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 1   0   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   1   0 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   0   1 0   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 1   0   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   1   0 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0   1 0   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 1   0 

0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   0   0 0   1 

 

Array representation of Blosum-62 Encoding Table. Refer to the below matrix for corresponding 

amino acids. 

4   0   -2  -1  -2  0   -2  -1  -1  -1  -1  -2  -1  -1  -1  2   0   0   -3  -2 

0   9   -3  -4  -2  -3  -3  -1  -3  -1  -1  -3  -3  -3  -3  -1  -1  -1  -2  -2 

-2  -3  6   2   -3  -1  -1  -3  -1  -4  -3  1   -1  0   -2  0   -1  -3  -4  -3 

-1  -4  2   5   -3  -2  0   -3  1   -3  -2  0   -1  2   0   0   -1  -2  -3  -2 

-2  -2  -3  -3  6   -3  -1  0   -3  0   0   -3  -4  -3  -3  -2  -2  -1  1   3 

0   -3  -1  -2  -3  6   -2  -4  -2  -4  -3  0   -2  -2  -2  0   -2  -3  -2  -3 

-2  -3  -1  0   -1  -2  8   -3  -1  -3  -2  1   -2  0   0   -1  -2  -3  -2  2 

-1  -1  -3  -3  0   -4  -3  4   -3  2   1   -3  -3  -3  -3  -2  -1  3   -3  -1 

-1  -3  -1  1   -3  -2  -1  -3  5   -2  -1  0   -1  1   2   0   -1  -2  -3  -2 

-1  -1  -4  -3  0   -4  -3  2   -2  4   2   -3  -3  -2  -2  -2  -1  1   -2  -1 

-1  -1  -3  -2  0 -3  -2  1   -1  2   5   -2  -2  0   -1  -1  -1  1   -1  -1 

-2  -3  1   0   -3  0   1   -3  0   -3  -2  6   -2  0   0   1   0   -3  -4  -2 

-1  -3  -1  -1  -4  -2  -2  -3  -1  -3  -2  -2  7   -1  -2  -1  -1  -2  -4  -3 

-1  -3  0   2   -3  -2  0   -3  1   -2  0   0   -1  5   1   0   -1  -2  -2  -1 

-1  -3  -2  0   -3  -2  0   -3  2   -2  -1  0   -2  1   5   -1  -1  -3  -3  -2 

1   -1  0   0   -2  0   -1  -2  0   -2  -1  1   -1  0   -1  4   1   -2  -3  -2 

0   -1  -1  -1  -2  -2  -2  -1  -1  -1  -1  0   -1  -1  -1  1   5   0   -2  -2 

0   -1  -3  -2  -1  -3  -3  3   -2  1   1   -3  -2  -2  -3  -2  0   4   -3  -1 

-3  -2  -4  -3  1   -2  -2  -3  -3  -2  -1  -4  -4  -2  -3  -3  -2  -3  11  2 

-2  -2  -3  -2  3   -3  2   -1  -2  -1  -1  -2  -3  -1  -2  -2  -2  -1  2    7 



 

4.7. The HNN weights parameter file 

This file defines the weights parameters and is required for setting up the weights probabilities of 

an HNN. All free weights parameters are stored in this file.  

Weights are defined by the set of OSYM (without Begin and End States), the number of hidden 

neurons hidden layer (Configuration Setting) and the sliding window size multiplied by the set of 

symbols. 

We specify a free weights parameter for a 4-osym-state HMM, 3 hidden neurons layer and a 

sliding window size 7 with the following format: 

NEURAL 0 

WTS12 -0.15696 1.14555 -8.59802 ... 16.01435  

WTS12 -0.62859 0.85758 -0.07924 ... -3.65333  

WTS12 -5.31464 -55.84822 8.62123 ... -33.08123  

WTS23 -0.19443 -1.11150 0.91709 -0.42294  

NEURAL 1 

WTS12 -0.23986 0.10515 -21.70516 ... 10.46336  

WTS12 -0.18695 20.63290 -21.92341 ... -4.76647  

WTS12 -0.59495 -30.60860 -16.51392 ... -1.63771  

WTS23 -0.00441 -0.039497 0.08402 -0.05086  

NEURAL 2 

WTS12 -7.64004 -56.26525 -27.66893 ... 15.18229  

WTS12 -8.28003 -34.02406 -37.30982 ... -29.11880  

WTS12 0.257946 0.84665 3.00777 ... 9.91106  

WTS23 1.794773 -3.73520 -2.055307 -12.45842  

NEURAL 3 

WTS12 -14.88240 24.10897 -10.74230 ... -5.57302  

WTS12 -2.84271 3.16543 33.28198 ... 32.04171  

WTS12 -1.01723 -6.44938 30.87235 ... 18.17052  

WTS23 0.38879 -2.49222 -1.77682 -2.89902  

NEURAL 4 

WTS12 -14.25349 10.14863 -84.25486 ... -38.58804  

WTS12 4.70765 -53.21236 92.12243 ... 7.30671  

WTS12 -1.95006 -37.02785 39.10344 ... 14.11872  

WTS23 0.67631 -2.58945 -7.75523 0.15810  

 

4.8. The configuration file 

A configuration file makes it possible to use most of the library’s algorithms without writing any 

line of code. 

There are a number of options for specifying the output generated by the program. 

TRAINING OPTIONS 

RUN_CML: Use this option to specify if Conditional Maximum Likelihood (CML) method is to be 

used; it accepts two values, i.e. true/false (default value is false). CML implies 

Gradient (RUN_GRADIENT). 

RUN_GRADIENT: Use this option to specify if Gradient method is to be used; it accepts two 

values, i.e. true/false (default value is false). If RUN_CML is true, then Gradient is 



used by default. If both CML and GRADIENT options are false, then the traditional 

Baum-Welch algorithm is used. 

HNN: Use this option to specify if Hidden Neural Network (HNN) method is to be used; it accepts 

two values, i.e. true/false (default value is false) 

ALLOW_BEGIN: Use this option to specify if Begin state is to be used; it accepts two values, i.e. 

true/false (default value is true) 

ALLOW_END: Use this option to specify if End state is to be used; it accepts two values, i.e. 

true/false (default value is true) 

RUN_ViterbiTraining: Use this option to specify if Viterbi Training Method is to be used; it accepts 

two values, i.e. true/false (default value is false). VITERBI can be used, as the method 

of computing expected counts, with all the previous combinations of CML and 

GRADIENT. 

threshold: This option specifies a threshold score for terminating the training algorithm; the default 

value is 0.02. 

maxIter: This attribute specifies the maximum number of iterations for terminating the training 

algorithm; the default value is 200. 

 

Fig. 1. The training workflow.  



PROBABILITIES 

TRANSITIONS: Use this option to specify which method is to be used to initialize transition 

probabilities; it accepts either of the following four values (see section 4.3). 

− FILE, Initialize Transition probabilities by file (default value)  

− RANDOM, Randomizing Transitions (*) 

− UNIFORM, Uniformizing Transitions (*) 

− VITERBI, Initialize Transition probabilities using Viterbi method (*) 

(*) for all these methods, a valid transition probabilities matrix is needed, since the grammar of 

the HMM depends on it in order to determine the non-zero (allowed) transitions. 

EMISSIONS: Use this option to specify which method is to be used to initialize emission 

probabilities; it accepts either of the following four values ((see section 4.4). 

− FILE, Initialize Emission probabilities by file (default value) 

− RANDOM, Randomizing Emissions 

− UNIFORM, Uniformizing Emissions 

− VITERBI, Initialize Emission probabilities using Viterbi method 

WEIGHTS: Use this option to specify which method is to be used to initialize HNN weights; it 

accepts either of the following four values (see section 4.7). 

− FILE, Initialize HNN weights by file (default value) 

− RANDOM_NORMAL, Randomizing HNN weights 

− RANDOM_UNIFORM, Randomizing HNN weights using the Normal method 

− RPROP, Initialize HNN weights using the RPROP method 

− BOOT, Initialize HNN weights using the Bootstrap method 

 

Multithreaded parallelization for multicores 

PARALLEL: Use this option to specify if multithreaded parallelization method is to be used; it 

accepts two values true/false (default value is false). If you specify false value, the 

program will run in serial mode. 

allCPU: Use this option to specify if JUCHMME will use all available cores on your machine; it 

accepts two values true/false (default value is false).  

nCPU: Use this option to specify the number of cores each JUCHMME process will use for 

computation; it accepts positive values 0 < value < Available Cores on your machine. 

 

SEMI-SUPERVISED LEARNING OPTIONS (see section 5.1) 

SSL_ENABLED: Use this option to specify if Semi-supervised learning method is to be used, it 

accepts two values, i.e. true/false (default value is false). 

SSL_METHOD: Use this option to specify which Semi-supervised training method is to be used, 

it accepts either of the following two values  



− 1: SSL, Self-training (default value) 

− 2: GEM, Generalized EM 

SSL_ADD_METHOD: Use this option to specify which method is to be used to add sequences.  
The option is defined by an integer; it accepts either of the following four values:  

− 1: Use all (default value) 

− 2: Use all, weighted by a (constant) value of λ<1 

− 3: Use all, weighted by P(y*|xu,θ) 

− 4: Use most confident examples, those with reliability less than a given threshold  

SSL_USING_METHOD: Use this option to specify which decoding method is to be used. The 

option is defined by an integer; it accepts either of the following four values:  

− 1: VITERBI 

− 2: NBEST [8] 

− 3: Posterior–Viterbi (POSVIT) [9] 

− 4: Optimal Accuracy Posterior Decoder (PLP) [10] (default value) 

SSL_THRESHOLD: This option specifies a threshold score for terminating the semi-supervised 

training algorithm (default value is 0.000002) 

SSL_maxIter: This attribute specifies the maximum number of iterations for terminating the semi-

supervised training algorithm (default value is 200). 

SSL_relscore: This attribute specifies the optimal threshold used by method 4 (default value is 

0.95) 

SSL_WEIGHT: This attribute specifies the (constant) value of λ used by method 2 (default value 

is 0.2). 

 

EXTENDED ENCODING OPTIONS (see section 6.2) 

PAST_OBS_EXTENSION: Use this option to specify if Extending Encoding Method is to be used; 

it accepts two values, i.e. true/false (default value is false). 

ENCODE_TYPE: Use this option to specify the Encoding Scheme. The option is defined by an 

integer; it accepts either of the following four values. If you specify 0 as value, the 

program will run with your own Encoding scheme taking into account the parameters 

GROUP_SYMBOLS and GROUPING:  

− 1 (default value): An Encoding with 40 (20x2) symbols depending on whether the 

previous residue is hydrophobic (A, F, H, I, L, M, V, W, Y) or non-hydrophobic (C, D, 

E, G, K, N, P, Q, R, S, T). (Encoding 1). 

− 2: An Encoding with 80 (20x4) symbols depending on whether the previous residue 

is: Hydrophobic–Aromatic (F, H, Y, W), Hydrophobic–non-Aromatic (A, I, L, M, V, 

G), non-Hydrophobic–Charged (D, E, K, R), non-Hydrophobic–Polar (C, N, P, Q, S, 

T). (Encoding 2). 

− 3: An Encoding with 160 (20x8) symbols depending on whether the previous residue 

is: Hydrophobic–Small (A, G), Polar–Special (P, C), Polar–OH (S, T), Polar–NH (N, 



Q), Charged–Negative (D, E), Charged–Positive (K, R), Hydrophobic–Huge (I, L, M, 

V) and Hydrophobic–Aromatic (F, H, Y, W). (Encoding 3). 

− 4: An Encoding with 400 (20x20) symbols that takes into account all possible 

dipeptide combinations. (Encoding 4).  

GROUP_SYMBOLS: Use this option to specify the number of groups. The option is defined by a 

String. For instance, to define an encoding with two groups, depending on whether 

the previous residue is hydrophobic (A, F, H, I, L, M, V, W, Y) or non-hydrophobic (C, 

D, E, G, K, N, P, Q, R, S, T), use 0 for hydrophobic and 1 for non-hydrophobic (see 

section 6.2).     

GROUPING: Use this option to specify in which group corresponds each letter of the alphabet. 

The option is defined by a String. For instance, to define an encoding with two groups, 

depending on whether the previous residue is hydrophobic (A, F, H, I, L, M, V, W, Y) 

or non-hydrophobic (C, D, E, G, K, N, P, Q, R, S, T), use value 

10001011011000000111 (see section 6.2). 

PAST_OBS_NO: Use this option to specify the number of previous observations. The option is 

defined by an integer (default value is 1). 

 

DYNAMIC OPTIONS  

These parameters control the dynamic programming algorithm used for imposing constraints in 

Posterior decoding prediction. The algorithm is based on [32-35], but it is considered obsolete. 

MINHLEN: Use this option to specify the minimum length of predicted strands (default value is 7).  

MINLLEN: Use this option to specify the minimum length of predicted loop (default value is 1). 

MAXHLEN: Use this option to specify the maximum length of predicted strands (default value is 

17). 

MAXNSTRAND: Use this option to specify the maximum number of predicted strands (default 

value is 32). 

MINSSC: Use this option to specify the minimum score of predicted strands (default value is 3). 

STRDIV: Use this option to specify the minimum sequence length required for one predicted 

strand (default value is 9). 

 

Refine OPTIONS (see section 5.7) 

FLANK: Use this option to specify a flanking region (i.e. number of residues in each direction of 

the end of a membrane-spanning helix).  

REFINE: Use this option to specify if Refine method is to be used; it accepts two values, i.e. 

true/false (default value is false). 

ML_INIT: Use this option to specify if the starting output model would be CML with ML;, it accepts 

two values, i.e. true/false (default value is false). 



 

DECODING OPTIONS (see section 5.4) 

VITERBI: Use this option to specify if Viterbi Decoding method is to be used; it accepts two values, 

i.e. true/false (default value is true) 

NBEST: Use this option to specify if NBest Decoding method is to be used; it accepts two values, 

i.e. true/false (default value is false) [8] 

DYNAMIC: Use this option to specify if Dynamic Decoding method is to be used; it accepts two 

values, i.e. true/false (default value is false). 

POSVIT: Use this option to specify if Posterior–Viterbi Decoding method is to be used; it accepts 

two values, i.e. true/false (default value is false) [9].  

PLP: Use this option to specify if Optimal Accuracy Posterior Decoder Decoding method is to be 

used; it accepts two values, i.e. true/false (default value is true) [10]. 

All decoding methods can be used in conjunction. 

CONSTRAINT: Use this option to specify if constraint method is to be used; it accepts two values, 

i.e. true/false (default value is false) (see section 5.5). 

 

 

Fig. 2. The training workflow.  

 

EARLY STOPPING 

EARLY: Use this option to specify if the early stopping method is to be used; it accepts two values, 

i.e. true/false (default value is false). 



CUSTOM_STOP: Use this option to specify a weight factor for Early Stopping method; the default 

value is 0.0. 

NTRAIN: This attribute specifies the number of sequences for training in the early stopping 

method (the default value is 15). 

NROUND: This attribute specifies the maximum number of iterations for running the early 

stopping method (default value is 5). 

ITER: This attribute specifies the maximum number of iterations that start running the early 

stopping training algorithm (default value is 2). 

 

GRADIENT DESCENT OPTIONS  

As presented in [7], JUCHMME supports two algorithms that use individual learning rate 

adaptation. If both options are set to TRUE then the algorithm #2 is used. This is a version of the 

RPROP algorithm [36] for individual learning rate adaptation, originally proposed for Neural 

Networks. If RPROP is false and SILVA is true, then the algorithm #1 is used, which uses an 

individual learning rate (a variant of the Silva and Almeida algorithm). The difference of the two 

algorithms lies in the fact that in RPROP the magnitude of the partial derivative is neglected and 

only its sign is used. This method seems to perform best. When both options are set to FALSE, 

standard gradient descent is applied. When RPROP is true and SILVA is false, a variant of the 

Manhattan method is applied, but this method is neither tested, nor is it expected to work well. 

For standard gradient descent we use learning rates, ranging between 0.001 to 0.1 for both 

emission (kappaE) and transition probabilities (kappaA), whereas the same values were used for 

the initial parameters for every parameter of the model. Finally, for setting the minimum and 

maximum allowed learning rates we used kappaAmin, kappaEmin equal to 10-20 and 

kappaAmax,kappaEmax equal to 10. 

RPROP: Use this option to specify the training method. It is enabled if RUN_GRADIENT method 

is used (ML or CML) and it accepts two values, i.e. true/false (default value is true). 

The option works in combination with SILVA (*). 

SILVA: Use this option to specify the training method. It is enabled if RUN_GRADIENT method is 

used (ML or CML) and it accepts two values, i.e. true/false (default value is true). The 

option works in combination with RPROP (*). 

momentum: To avoid to get stuck in a local minima, we use a momentum term in the objective 

function, which is a value between 0 and 1 that increases the size of the steps taken 

towards the minimum by trying to jump from a local minima. 

kappaA: Use this option to specify the learning rate of Transitions (default value is 0.01D). 

kappaAmin: Use this option to specify the minimum value of learning rate of Transitions, in case 

an individual learning rate training method is used (default value is 1e-20).  

kappaAmax: Use this option to specify the maximum value of learning rate of Transitions, in case 

an individual learning rate training method is used (default value is 1.0). 

kappaE: Use this option to specify the learning rate of Emissions (default value is 0.01D). 



kappaEmin: Use this option to specify the minimum value of learning rate of Emissions, in case 

an individual learning rate training method is used (default value is 1e-20). 

kappaEmax: Use this option to specify the maximum value of learning rate of Emissions, in case 

an individual learning rate training method is used (default value is 1.0). 

NPLUS: Use this option to specify a value for increasing factors (default value is 1.2). 

NMINUS: Use this option to specify a value for decreasing factors (default value is 0.5). 

 

PRIOR OPTIONS (see section 5.6) 

NOISE_TR: Use this option to specify if prior information is to be added in transitions; it accepts 

two values, i.e. true/false (default value is true). 

NOISE_EM: Use this option to specify if prior information is to be added in emissions; it accepts 

two values, i.e. true/false (default value is true). 

PRIOR_TRANS: Use this option to specify a prior probability in [0:1] of Transitions (default value 

is 0.001). 

 

HNN OPTIONS (see section 6.3) 

windowLeft: Use this option to specify the sequence window size on the left, default value is 3. 

windowRight: Use this option to specify the sequence window size on the right, default value is 3. 

nhidden: This attribute specifies the number of hidden neurons of the hidden layer, the default 

value is 3. 

ADD_GRAD: Use this option to specify a weight factor for error in the Gradient Descent Method 

(default value is 0.0). 

DECAY: Use this option to specify a weight decay that causes the weights to exponentially decay 

to zero (default value is 0.001). A different way to constrain a network, and thus 

decrease its complexity, is to limit the growth of the weights through some kind of 

weight decay. It should prevent the weights from growing too big unless it is really 

necessary. It can be imposed by adding a term to the cost function that penalizes 

large weights [37]. 

hiddenLayerFunction: Use this option to specify which hidden layer activation function is to be 

used. 

− 1: Sigmoid Function. 
− 2: Sigmoid Modified Function (default value). 
− 3: Tanh. 

 

BOOTSTRAP OPTIONS (HNN ONLY) 



BOOT: Use this option to specify the maximum number of iterations to weights initialization by 

Bootstrap Method (the default value is 0). 

STDEV: Use this option to specify the Standard Deviation (the default value is 1.5). 

RANGE: Use this option to specify a double number to initialize the pseudo-random weights (the 

default value is 5.0). 

SEED: Use this option to specify a long number to initialize the pseudo-random weights (the 

default value is 568381). 

WEIGHT_RAND: Use this option to add noise to weights initialization (the default value is 0.0). 

WEIGHT_TIME: Use this option to specify if a seed value is to be used; it accepts two values, i.e. 

true/false (default value is false). 

 

RpropNN OPTIONS (HNN ONLY) 

numberOfCycles: This attribute specifies the maximum number of iterations for terminating the 

training algorithm (the default value is 150). 

doCrossVal: Use this option to specify if Cross Validation method is to be used; it accepts two 

values, i.e. true/false (default value is false). 

crossValIter: This attribute specifies the maximum number of iterations for terminating the Cross-

Validation training procedure (the default value is 5).  

minGEdiff: This attribute specifies the maximum number of error between two iterations to 

terminate the training algorithm (the default value is 0). 

globalError: This attribute specifies the global Error function, it accepts two values, i.e. RMSE/CE 

(default value is RMSE)   

initialDelta: Use this option to specify the learning rate (default value is 0.1).  

maxDelta: Use this option to specify the maximum delta value (default value is 50). 

minDelta: Use this option to specify the minimum delta value (default value is 1e-6). 

etaInc: Use this option to specify the incremental learning factor/rate (default value is 1.2). 

etaDec: Use this option to specify the decremental learning factor/rate (default value is 0.5). 

 

4.9. The Output text file 

JUCHMME provides a simple output text file for the free transition parameters (see section 4.3), 

a simple output text file for the free emission parameters (see section 4.4) and a simple output 

text file for the HNN weights parameters (see section 4.7).  

JUCHMME also provides a simple output text file for storing the results of sequence decoding or 

training. The first section is the header that tells you what program you ran, on what, and with 

which options. 



JUCHMME :: Java Utility for Class Hidden Markov Models and Extensions 

Version 2.1; September 2018 

Copyright (C) 2018 Pantelis Bagos 

Freely distributed under the GNU General Public Licence (GPLv3) 

-------------------------------------------------------------------------- 

Preparing System Arguments 

-------------------------------------------------------------------------- 

Preparing System Model (../models/demo.mdel) 

Using model DEMO 

Model has 6 states. 

-------------------------------------------------------------------------- 

Preparing System Configuration (../conf/conf.demo) 

Multithreaded parallelization = true 

Processors : 10 

Ka = 0.01 min = 1.0E-20 max = 1.0 

Ke = 0.01 min = 1.0E-20 max = 1.0 

momentum = 0.0 

RPROP = true SILVA =true Weight Decay = 0.001 

PRIOR_TRANS= 0.001 

-------------------------------------------------------------------------- 

Preparing Sequences 

100 sequences in file ../input/demoSet.seq 

100 sequences are Labeled  

-------------------------------------------------------------------------- 

Initialize Transition Probabilities By File 

Initialize Emission Probabilities By File 

-------------------------------------------------------------------------- 

 

The second section is the training, which starts with the label TRAINING and the training 

procedure that can be one of Self Consistency, Cross-Validation or JackKnife. Then, all training 

steps according to the system configurations are shown. 

TRAINING - Self Consistency 

 Computing Forward+Backward (Clumped) 

 ----------------------------------------------------------------------------------------- 

 ***************************************************************************************** 

1 log likelihood = -2275.8711098899776 

 Computing expected counts 

 ......................................................................................... 

 Updating transitions and emissions using Baum-Welch 

E zero at k=0 

A zero at k=5 

E zero at k=5 

 Computing Forward+Backward (Clumped) 

 ----------------------------------------------------------------------------------------- 

 ***************************************************************************************** 

2 log likelihood = -2614.1851848861643   diff = 338.3140749961867 

 Computing expected counts 

 ......................................................................................... 

 Updating transitions and emissions using Baum-Welch 

E zero at k=0 

A zero at k=5 

E zero at k=5 

 

The third section is the TESTING/DECODING. First, JUCHMME reports the sequence details 

such as sequence identifier (ID), sequence (SQ) and sequence observation (OB). Next, results 

are generated for each algorithm that the user defined in the configuration file. For each algorithm, 

we use a different set of labels and, more specifically, a different label at the beginning of each 

line. For instance, in the case of the VITERBI algorithm we use the labels (VS, VR, VP, where S 

stands for Score, R stands for Reliability and P stands for Path), in the case of the Optimal 

Accuracy Posterior Decoder algorithm the respective labels (LS, LR, LP), for Posterior-Viterbi we 

have PS, PR and PP, whereas for N-best we have NS, NR, NP.  



TESTING 

ID: >SEQ_82 

SQ: ACAAACGAAATCCACACAAAC 

OB: MMMMMMMMMMMMMOOOOOOOO 

CC: lng = 21.0 logodds = 27.676880823281603 (-logprob/lng) = 1.4170089237786447  

VS: -3.143084398920788 

VR: 0.5443280039582037 

VP: MMMMMMOOOOOOOOOOOOOOO 

PS: 19.244528764979968 

PR: 0.7914446048321854 

PP: MMMMMMMMMMMMMOOOOOOOO 

LS: 32.567814447386866 

LR: 0.7914446048321854 

LP: MMMMMMMMMMMMMOOOOOOOO 

NS: -1.8184147700199027 

NR: 0.7914446048321854 

NP: MMMMMMMMMMMMMOOOOOOOO 

The fourth section is the statistics. JUCHMME prints statistical results for each decoding algorithm 

which starts with the label identified by its name (see section 5.8). For measures of accuracy in 

case of membrane protein prediction methods we used the fraction of the correctly predicted 

residues in a two-state mode (Q2), the fraction of proteins with correctly predicted topologies, the 

segments over-lap measure (SOV) and the Mathews correlation coefficient (MCC) that 

summarizes in a single measure true positives (TP), false positives (FP), true negatives (TN) and 

false negatives (FN). In other cases, users can use decoding output to implement their measures. 

VITERBI: 

 

Q2:0.845 Qa:0.737 Qna:0.916 Pa:0.855 Pna:0.839 Qfas:0.827 

Ca:0.673 SM:0.885 TP:596 FP:37 FN:122 Correct Top:10 Correct Ori:10 Avg SOV:0.787 

 

PLP: 

 

Q2:0.852 Qa:0.772 Qna:0.906 Pa:0.846 Pna:0.856 Qfas:0.839 

Ca:0.690 SM:0.904 TP:627 FP:47 FN:91 Correct Top:14 Correct Ori:14 Avg SOV:0.807 

 

Finally, JUCHMME reports the Execution time. 

Execution time = 561 miliseconds 

Execution time = 0.561 seconds 

 

4.10. The input Multiple Sequence Alignment FASTA file 

This file stores the input Multiple Sequence Alignment for decoding algorithms in one line 

FASTA format. The following is an example of an input sequence file: 

>B1L914|3dinE 

MKTF-FL-IVHTI-ISVAL-I-Y-MVQVQ-M-S-K---F--S--E-L-----G-----G---AF----G-----S--

--G-----G-------L-----H----T--V---F----G---R----R--K--G--L---D----T---G-G-K--

-I---T-LVLSVLFFVSCV--VT--AF-V-L-TR------- 

>A0A2A4PUF1/1-81 [subseq from] A0A2A4PUF1 

MQTI-LL-LIHVV-IAVAL-V-G-LVLLQ-H-G-K---G--A--D-A-----G-----A---AF----G-----S--

--G-----A-------S-----Q----T--V---F----G---S----Q--G--S--G---S----F---L-T-R--

-A---T-GILATVFFVTSL--VL--AY-L-S-XGQVTNS-- 

>A0A1H8RXY5/1-83 [subseq from] A0A1H8RXY5 

MAQI-VL-IFHVV-IAIAL-V-V-LVLLQ-H-G-K---G--A--D-A-----G-----A---AF----G-----S--

--G-----A-------S-----S----T--V---F----G---A----R--G--S--A---T----F---L-S-R--

-I---T-AMLAAGFFITSL--TL--AM-F-A-SRDAGPGSV 

 



 

5. Supported features 

JUCHMME provides a simple and user-friendly text input file format for configuration, model 

design and model probabilities. 

5.1. Determine the Initial Probabilities of the HMM  

JUCHMME provides a flexible functionality to parameterize/initialize transition, emission and 

weight probabilities. Transition probabilities are required to be provided as input since they 

describe the model itself. In the initial transition probabilities table, non-zero entries define the 

allowed transitions between states and thus define the model architecture (a transition probability 

of zero cannot be undone). Emission probabilities are required in case an HMM is to be used and 

are obsolete in case an HNN is to be used. The user can specify in the configuration settings if it 

needs to randomize or to uniformize either transition or emission probabilities. Moreover, the user 

can choose to initialize probabilities using the Viterbi algorithm on the training data (this is the 

suggested option for real-life applications). 

Configuration Settings 

#PROBABILITIES 

# FILE, RANDOM, UNIFORM, VITERBI 
TRANSITIONS=FILE 

# FILE, RANDOM, UNIFORM, VITERBI 
EMISSIONS=FILE 

# FILE, RANDOM_NORMAL, RANDOM_UNIFORM, RPROP, BOOT 

WEIGHTS=RPROP 

 

5.2. Tying  

Another feature is called tying (or parameter sharing), which is used extensively in speech 

recognition (the same technique is called ‘weight sharing’ for neural networks). Tying of two states 

means that the emission probabilities are always identical in the two states. To keep the number 

of parameters at a reasonable level, one could apply tying as commonly done in context-

dependent modeling with standard HMMs. For example, if the M symbol is modeled as a left 

context part (M) and a core part (m), one could tie the match networks between the "core states" 

across all sub-models (m, M) for the same symbol (M). This would largely decrease the number 

of parameters (see section 4.5). 

5.3. Training  

JUCHMME provides a variety of computationally efficient parameter training algorithms: linear-

memory Baum-Welch training means both for Maximum Likelihood (ML) and for Conditional 

Maximum Likelihood (CML), linear-memory Viterbi training, linear-memory posterior sampling 

training and Gradient Descent for Conditional Maximum Likelihood (CML). 

Traditionally, HMM training is performed using the Baum-Welch algorithm [1-3] which is a special 

case of the Expectation-Maximization (EM) algorithm for missing data [4]. Missing data in this 

case is the path π (i.e. the sequence of states), since, if we knew the exact path, the Maximum 

Likelihood (ML) estimates could be easily derived by counting the observed transitions and 



emissions. An alternative to the Baum-Welch algorithm, even though not widely used, is the 

gradient-descent algorithm proposed by Baldi and Chauvin [5]. In any case, in these models, 

maximization of the likelihood corresponds to an unsupervised learning problem.  

In other biological sequence analysis problems, where we want to classify various segments 

along the sequence, we often use labeled sequences for training. In such cases, each amino acid 

sequence x is accompanied by a sequence of labels y for each position i in the sequence (y=y1, 

y2, …,yL). Consequently, we declare a new probability distribution, the probability δk(yi=c) of a 

state k having a label c. In most applications, this probability is just a delta-function, since a 

particular state is not allowed to match more than one label. Krogh proposed a simple modification 

of forward and backward algorithms in order to incorporate information from labeled data [19]. 

The likelihood to be maximized in such situations is the joint probability of the sequences (x) and 

the labels (y) given the model, in which the summation is done only over those paths Πy that are 

in agreement with the labels y. This typically corresponds to a supervised learning procedure. 

With the use of labeled sequences, we can also perform a kind of discriminative training, with a 

criterion known as Conditional Maximum Likelihood (CML). Furthermore, there is no EM algorithm 

for training and one has to use general gradient-based methods [11]. 

Configuration Settings 

# TRAINING OPTIONS 

RUN_CML=false 

RUN_GRADIENT=false 

HNN=false 

ALLOW_BEGIN=true 

ALLOW_END=true 

RUN_ViterbiTraining=false 

threshold=0.02 

maxIter=200 

 

Forward and Backward algorithms 

The standard Forward (1) and Backward (2) algorithms are employed in the likelihood calculations 

in HMMs. 
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5.4. Decoding  

JUCHMME provides a variety of Algorithms for generating predictions by sequence decoding 

using the standard Viterbi (VITERBI) [2] algorithm and also more advanced techniques such as 

the N–Best (NBEST) [8], Posterior-Viterbi decoding (POSVIT) [9] and Optimal Accuracy Posterior 

Decoder (PLP) [10]. 

 

Viterbi algorithm 

The Viterbi algorithm is a dynamic programming algorithm that, contrary to the Forward and 

Backward algorithms, finds the likelihood of the most probable path of states and not the total 

probability of all paths. With a backtracking step, the algorithm finally recovers the most probable 

path. The algorithm is conceptually similar to the Forward algorithm, where the consecutive 

summations are replaced by maximizations: 
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1-best algorithm 

The 1-best decoding is a modification of the N-best decoding method, proposed earlier for speech 

recognition [38]. It is a heuristic algorithm that tries to find the most probable path of labels (ymax) 

of a sequence instead of the most probable path of states. For each position i in the sequence, it 

keeps track of all the possible active hypotheses hi-1 that consist of all the possible sequence of 

labels up to that point. Afterwards, for each state l, it propagates these hypotheses, appending 

each one of the possible labels yi, and picks up the best, until the end of the sequence. In contrast 

to the Viterbi algorithm, 1-best does not need a traceback procedure: 
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  (4) 

 

The main drawback of 1-best is that the computation time is significantly longer than Viterbi, 

However, the memory requirement is only weakly dependent on sequence length, since it 

depends on the number of states in the model. The low memory requirement is particularly useful 

when parsing very long sequences, where the simple Viterbi algorithm requires more memory.  

Posterior-Viterbi decoding (POSVIT) 

Fariselli and co-workers have provided a decoding algorithm that combines elements of the Viterbi 

and the posterior decoding [9]. The Posterior-Viterbi decoding algorithm performs essentially a 

Viterbi-like decoding, using the Posterior probabilities instead of the emissions and the allowed 

paths given by the delta function instead of the transitions. 
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Optimal Accuracy Posterior Decoder algorithm (PLP) 

Käll and coworkers presented a very similar algorithm, the Optimal Accuracy Posterior Decoder 

which requires class HMMs [10]. 
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Configuration Settings 

# DECODING OPTIONS 

VITERBI=true 

NBEST=false 

DYNAMIC=false 

POSVIT=false 

PLP=true 

 

5.5. Constrained predictions  

This is a simple method that allows incorporation of prior topological information when performing 

a constrained prediction [11, 28] . 

 

Configuration Settings 

CONSTRAINT=false 

 

We will define the concept of the Information, ω that consists of 1≤r≤L residues of the sequence 
x, of which we know the experimentally determined labels, and thus the (a priori) labelling ωi: ω 
= ω1, ω2, ...,ωr . According to this terminology, the set of residues with a priori known labels ωr, is 
a subset of the set I = (1,2, ...,L) defined by the residues of the sequence. The labels ωi should 
belong to the same set of labels defined in the model architecture. 



 
Modified Forward algorithm 
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Modified Backward algorithm 
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Modified Viterbi algorithm 
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Modified 1-best algorithm 
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Modified Posterior-Viterbi algorithm 
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Modified Optimal Accuracy Posterior Decoder algorithm 
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5.6. Prior probabilities  

JUCHMME provides a very flexible way for integrating prior probabilities along the input 

sequences into the prediction process; a mapping between the labels of the states in the HMM 

and the different types of prior information has to be defined. This was implemented by adding 

noise to the model parameters, and then decreasing the level of this noise by prior value per 

iteration. For transitions, an optional Boolean attribute defines (PRIOR_TRANS) whether the 

annotation label set accepts a prior probability in [0:1]. For emissions, an optional Boolean for 

each symbol is defined in Model Settings. Users can define any distribution for each state in an 

HMM model. The system takes care of the correct normalization of the prior probabilities. This 

means that the sum of the prior probabilities for mutually exclusive annotation labels in one 

annotation label set assigned on the same interval of sequence positions has to be at most 1 (and 

exactly 1, if the annotation labels of one set cover all possibilities). 

New_Α = Α + PRIOR_TRANS * A_initial 

New_E = E x PRIOR1 + E_initial x PRIOR2 + PRIOR x PRIOR3 

Exception in thread "main" java.lang.Exception: ERROR: Zero probability at 

position 1. Symbol: G Obs: I.  

 

Configuration Settings 

#PRIOR OPTIONS 

NOISE_TR=true 

NOISE_EM=true 

PRIOR_TRANS=0.001 

 

Model Settings 

#MODEL PRIOR for every symbol (esym) 

PRIOR = 0.077 0.018 0.058 0.066 

 

# Distribution for each state (osym) 

# Each column must have a sum equal to 1 

# osym     M    m    O    o   B   E 

PRIOR1 = 0.97 0.95 0.97 0.97 0.0 0.0 

PRIOR2 = 0.01 0.01 0.01 0.01 0.0 0.0 

PRIOR3 = 0.02 0.04 0.02 0.02 0.0 0.0 

 

In other cases, users can write their own function to implement a different functionality. 



5.7. Refine  

A technique to accommodate misplaced borders in the training data is to ‘dilute’ the labels by 

unlabelling a few states at each label boundary (i.e. between loop and membrane regarding 

membrane proteins) in order to allow for some freedom in choosing the state and correcting 

mislabeled regions. After a model was initially estimated, the labels of the sequences were 

deleted in a region flanking a number of residues (i.e. in each direction of the end of a membrane-

spanning segment), and predictions were performed from the relabeled sequences using the 

modified Viterbi algorithm presented above, and the model that was estimated from previous step. 

This gives a new labeling consistent with the overall structure of the protein, but with the exact 

boundaries moved such that it fits the model better, see Figure 2. 

Configuration Settings 

# Refine OPTIONS 
FLANK=3 

REFINE=true 

  

 

Fig. 2. Refine method workflow example. The lines after the sequence header show the labeling of the 

sequence. The second part shows the labeling after the boundaries have been unlabeled by 3 residues to 

each side (unlabeled positions are indicated with a “-”). Finally, a prediction is shown, which was obtained 

by forcing the prediction to conform to the labels.  

 

5.8. Statistics  

All the prediction algorithms also incorporate the corresponding reliability measures that have 

been proposed [13]. For measures of accuracy in case of membrane protein prediction methods 

(e.g. HMM-TM and PRED-TMBB2) we used the fraction of the correctly predicted residues in a 

two-state mode (Q2), the fraction of proteins with correctly predicted topologies, the segments 



over-lap measure (SOV) [14] and the Mathews correlation coefficient (MCC) [39] that summarizes 

in a single measure true positives (TP), false positives (FP), true negatives (TN) and false 

negatives (FN). In other cases, users can use decoding output to implement their measures. 

 

5.9. Random Sequences Generator  

Generation of random sequences according to the specified model. 

java hmm/RandomSeq ../tables/A_DEMO ../tables/E_DEMO ../conf/conf.demo ../models/demo.mdel 10 

Configuration Settings 

#RANDOM SEQUENCE UTILITY 

 

  

 

5.10. Multithreaded parallelization for multicores  

JUCHMME supports multicore parallelization using Java Fork-Join Framework. By default, our 

multithreaded programs will use all available cores on your machine. The user can control the 

number of cores each JUCHMME process will use for computation, and disable multithreading in 

the configuration file. If you specify PARALLEL=false, the program will run in serial mode. This 

might be useful if you suspect something is awry with the threaded parallel implementation. 

# Multithreaded parallelization for multicores 

PARALLEL=true 

allCPU=true 

nCPU=2 

 

5.11. Multiple sequence alignments  

In many protein structure prediction problems, a significant gain in prediction accuracy can be 

obtained by incorporating evolutionary information in the form of multiple sequence alignments 

(MSAs). The user can pass a Multiple Sequence Alignment file through command line 

parameters. 

 

6. Special features / Extensions 

Some features listed above are uniquely supported by JUCHMME and we will discuss them briefly 

in the following sections. 

6.1. Semi-supervised Learning 

JUCHMME supports a method for semi-supervised learning of HMMs that can incorporate 

labeled, unlabeled and partially-labeled data in a straightforward manner [18]. The algorithm is 

based on a variant of the Expectation-Maximization (EM) algorithm, where the missing data are 

considered as the missing labels of the unlabeled or partially-labeled data. The algorithm is an 



instance of the so-called self-training approach, which is a commonly used technique for semi-

supervised learning [40]. 

(1) Use the completely labeled data (xl, yl) to train an initial model (θ). 

(2) Use θ to predict the labels (y*) of the unlabeled or partially labeled data (xu). 

(3) Use the newly labeled data (xu, y*) along with the completely labeled ones (xl, yl) in order to train a 
new model (θ*). 

Method 1. Use all 

Method 2. Use all weighted by a (constant) value of λ<1 

Method 3. Use all weighted by P(y*|xu,θ) 

Method 4. Use most confident, i.e. those that have reliability less than an optimal threshold 

(4) Remove the predicted labels (y*) in order to obtain the initial dataset. Use the new model θ* to replace 
θ. 

(5) Iterate steps (2)-(4) until convergence. 

 



 

Fig. 3. A. A schematic illustration of the algorithm. B. The likelihood that is being maximized in the four 

variants of the algorithm described in the text. 

 



Configuration Settings 

#SEMI-SUPERVISED LEARNING OPTIONS 

SSL_ENABLED=true  (!important to enable extension) 

# SSL (standard Semi-supervised Method) or GEM (Generalized EM) 

SSL_METHOD=SSL 

#1: Use all, 2: Use weight (Constant) for each sequence, 3: Use weight 

(Reliability) for each sequence, 4: Use a few most confident 

SSL_ADD_METHOD=1 

#1:VITERBI, 2:NBEST, 3:POSVIT, 4:PLP 

SSL_USING_METHOD=4 

SSL_THRESHOLD=0.000002 

SSL_maxIter=200 

SSL_relscore = 0.95 

SSL_WEIGHT=0.2 

 

6.2. Extending HMMs to allow conditioning on previous observations 

Instead of having the usual emission probability distribution over letters of the alphabet, we allow 

a state to have the emission probability conditioned on the n previous letters in the sequence, 

which corresponds to an nth order Markov chain. This extension is useful for modeling coding 

regions. Here, we implement a simple extension of the standard HMMs in which the current 

observed symbol (amino acid residue) depends both on the current state and on a series of 

observed previous symbols [17]. The major advantage of the method is the simplicity in the 

implementation, which is achieved by properly transforming the observation sequence, using an 

extended alphabet. Notice that the state sequence is still first order, and therefore the HMM 

formalism is not altered significantly and all the standard algorithms remain unchanged.  

To implement the new encoding, we considered capacity issues, source code compatibility, and 

interoperability with other systems. The method comprises of automatic conversion of initial 

symbols, according to the standard character encoding Unicode. We use UTF-8 that is memory 

efficient and used by many operating systems and programming languages. Starting from the 

Latin capital letter A, our method uses serially consecutive Unicode characters to create the new 

alphabet. Figure 4 shows the proposed method for converting the parameters, alphabet symbols 

and sequences based on the selected encoding. The choice of the symbols used in the new 

alphabet is arbitrary and of no particular importance as long as we keep track of the 

correspondence. Another issue that should be addressed, after the conversion of the alphabet, is 

the number of probabilities of the new model and the size of the respective matrices. The transition 

probabilities remain unaltered, while the emission probabilities have to be changed based on the 

new encoding. For example, a t-order series requires 20t emission probabilities per state and 

thus, depending on the implementation of the HMM, the user has to modify its model accordingly. 

 



 

Fig. 4. The HMM extension diagram.  

 

JUCHMME supports the following encodings schemes related with protein sequences: 

(1) An Encoding with 40 (20x2) symbols depending on whether the previous residue is 

hydrophobic (A, F, H, I, L, M, V, W, Y) or non-hydrophobic (C, D, E, G, K, N, P, Q, R, S, T). 

(Encoding 1). 

(2) An Encoding with 80 (20x4) symbols depending on whether the previous residue is: 

Hydrophobic–Aromatic (F, H, Y, W), Hydrophobic–non-Aromatic (A, I, L, M, V, G), non-

Hydrophobic–Charged (D, E, K, R), non-Hydrophobic–Polar (C, N, P, Q, S, T). (Encoding 2). 

(3) An Encoding with 160 (20x8) symbols depending on whether the previous residue is: 

Hydrophobic–Small (A, G), Polar–Special (P, C), Polar–OH (S, T), Polar–NH (N, Q), 

Charged–Negative (D, E), Charged–Positive (K, R), Hydrophobic–Huge (I, L, M, V) and 

Hydrophobic–Aromatic (F, H, Y, W). (Encoding 3). 

(4) An Encoding with 400 (20x20) symbols that takes into account all possible dipeptide 

combinations. (Encoding 4). 
 

Configuration Settings 

#EXTENDED PAST OBSERVATIONS 

PAST_OBS_EXTENSION=true  (!important to enable extension) 

#1=40, 2=80, 3=160, 4=400 

ENCODE_TYPE=1 

GROUP_SYMBOLS = 10 

GROUPING=10001011011000000111 



PAST_OBS_NO = 1 

 

The user can choose one of the above encodings. In addition, JUCHMME  provides the user with 

the ability to define their own encoding by defining the value 0 to the parameter ENCODE_TYPE 

and defining their own encoding scheme with the parameters GROUP_SYMBOLS and 

GROUPING.  

For instance, to define an encoding with six groups, use the value 123456 which corresponds  

• 1 for Group-1 

• 2 for Group-2 

• 3 for Group-3 

• 4 for Group-4 

• 5 for Group-5 

• 6 for Group-6 

And finally define in parameter GROUPING which group corresponds each letter of the alphabet. 

For instance, in the case of proteins, an observed sequence is composed by a discrete set of 20 

symbols, following the alphabetical order of single-letter codes for the 20 amino acids: A, C, D, E, 

F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y. In this case, the value will be 

14431221561552443111. 

Configuration Settings 

#EXTENDED PAST OBSERVATIONS 

PAST_OBS_EXTENSION=true  (!important to enable extension) 

#1=40, 2=80, 3=160, 4=400 

ENCODE_TYPE=0 

GROUP_SYMBOLS = 123456 

GROUPING=14431221561552443111 

PAST_OBS_NO = 1 

 

6.3. Hidden Neural Network (HNN) 

Hidden Neural Network (HNN) is a general framework for hybrid Hidden Markov models (HMMs) 

and neural networks (NNs). The implementation of the hybrid system follows Krogh and Riis [16] 

framework. The basic idea in the Hidden Neural Network model is that the standard probability 

parameters of a CHMM are replaced by the outputs of neural networks assigned to each state. 

The network input wi corresponding to xi will usually be a window of context around xi. Defines 

the left (L) and right (R) the window can be  

(1) L=R, L>0, R>0, a symmetrical context window of (L + R) + 1 observations, xi-L, …, xi, …, 

xi+R. 

(2) L≠R, L>0, R>0, an asymmetric context window of (L + R) + 1 observations, xi-L, …, xi, …, 

xi+R. 

(3) L≠R, L>0, R=0, a left context window of (L + 1) observations, xi-L, …, xi. 

(4) L≠R, L=0, R>0, a right context window of (R + 1) observations, xi, …, xi+R. 

 



The initialization of the weights is implemented using the JOONE (Java Object Oriented Neural 

Network) library (http://www.joone.org/) which is a Java framework to build and run AI applications 

based on neural networks. 

The HNN framework uses feed-forward multilayer perceptron networks which are trained with the 

back-propagation algorithm. The network architecture, currently, consists of one hidden layer, 

one output layer and an input layer that consists of the current residue of a preset symmetrical or 

asymmetric window size, according to a SPARCE encoding and/or another form of a BLOSUM 

encoding. For the hidden layer activation function, the user can choose among Sigmoid (13), 

modified sigmoid (14) and hyperbolic tangent function, that limits its output within the range –1 

and +1 (15). As for the output level, the activation function selected is the sigmoid function (13), 

since it has a range of values in the interval (0,1) and therefore fulfills the criteria so that its effect 

can reflect the possibility of an amino acid. 
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Moreover, for network training it uses two different error functions, the root-mean-square error 

(RMSE) and Cross Entropy (CE). The neural network stops the training epochs, when it finishes 

a number of cycles or when the value of the global error changes during the training phase less 

than a predefined cutoff. 

 

Configuration Settings 

# TRAINING OPTIONS 

RUN_CML= true  (!important to enable Conditional Maximum Likelihood Learning) 

RUN_GRADIENT=true 

HNN= true  (!important to enable HNN extension) 

 

#HNN OPTIONS 

windowLeft=3 

windowRigth=3 

nhidden=3 

ADD_GRAD=0.0 

DECAY=0.001 

#1: Sigmoid, 2: Sigmoid Modified, 3: Tanh 

hiddenLayerFunction=2 

 

#BOOTSTRAP OPTIONS (HNN ONLY) 

BOOT=0 

http://www.joone.org/


STDEV=1.5 

RANGE=5.0 

SEED=568381 

WEIGHT_RAND=0.0 

WEIGHT_TIME=false 

 

#RPROPNN OPTIONS (HNN ONLY) 

numberOfCycles=50 

doCrossVal=true 

crossValIte=5 

minGEdiff=0 

globalError=CE 

initialDelta= 0.1  

maxDelta=50 

minDelta=1e-6 

etaInc=1.2 

etaDec=0.5 

 

7. Examples 

JUCHMMER has already been used in a number of important biological problems. The 

JUCHMME software package comprises several examples with all the necessary input and output 

files. The following examples illustrate the range of features supported by JUCHMME. 

 

7.1. PRED-TMMB  

This HMM can be used to predict the topology of transmembrane β-barrels [27, 41]. 

This example shows how parameter training with JUCHMME works. 

 

Self-consistency 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c 

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train -s 

 

Jackknife 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c 

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train -j 

 

k-fold Cross-validation (k=10) 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c 

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train -v 10 

 



HNN Self-consistency (RPROP Method for initialize Weights) 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -w 

../tables/W_PREDTMBB2_MYMODEL -c ../conf/conf.tmbb -m ../models/tmbb.mdel -x 

../tables/SPARCE -t ../input/TRAIN_SET_49_ALL.for_train -s 

 

Training 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TMBB2 -e ../tables/E_TMBB2 -c 

../conf/conf.tmbb -m ../models/tmbb.mdel -t ../input/TRAIN_SET_49_ALL.for_train 

 

Testing 

java -Xmx1024m hmm/Juchmme -a ../tables/A_TMBB2_TRAINED -e 

../tables/E_TMBB2_TRAINED -c ../conf/conf.tmbb -m ../models/tmbb.mdel -f ../input/ 

TRAIN_SET_49_ALL.fasta 

 

Testing using previous knowledge 

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/A_TMBB2_TRAINED -e 

../tables/E_TMBB2_40_TRAINED -c ../conf/conf.tmbb -m ../models/tmbb.mdel -f ../input/PRED-

TMBB2_newSet_40.seq 

 

7.2. HMM-TM  

This HMM can be used to predict α-helical transmembrane proteins [11]. 

This example shows how parameter training with JUCHMME works. 

 

Self-consistency 

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL -e ../tables/E_HELICAL -c 

../conf/conf.hmmtm -m ../models/hmmtm.mdel -t ../input/hmmtm_train_set.3line -s 

 

Jackknife 

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL -e ../tables/E_HELICAL -c 

../conf/conf.hmmtm -m ../models/hmmtm.mdel -t ../input/ hmmtm_train_set.3line -j 

 

Training 

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL -e ../tables/E_HELICAL -c 

../conf/conf.hmmtm -m ../models/hmmtm.mdel -t ../input/ hmmtm_train_set.3line 



Testing 

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL_TRAINED -e 

../tables/E_HELICAL_TRAINED -c ../conf/conf.hmmtm -m ../models/hmmtm.mdel -f 

../input/hmmtm_test_set.fasta 

 

Testing using previous knowledge 

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/A_HELICAL_TRAINED -e 

../tables/E_HELICAL_40_TRAINED -c ../conf/conf. hmmtm -m ../models/hmmtm.mdel -f 

../input/hmmtm_train_set.3line 

 

7.3. PRED-TAT  

This HMM can be used to predict twin-arginine and secretory signal peptides [42]. 

This example shows how parameter training with JUCHMME works. 

 

Self-consistency 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TAT -e ../tables/E_TAT -c ../conf/conf.tat -m 

models/tat.mdel -t ../input/TAT_Train_Set.crossval -s 

 

k-fold Cross-validation (k=31) 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TAT -e ../tables/E_TAT -c ../conf/conf.tat -m 

../models/tat.mdel -t ../input/TAT_Train_Set.crossval -v 31 

 

Training 

java -Xmx4096m hmm/Juchmme -a ../tables/A_TAT_TRAINED -e ../tables/E_TAT_TRAINED -c 

../conf/conf.tat -m models/tat.mdel -t ../input/TAT_Test_Set.fasta 

 

Testing 

java -Xmx1024m hmm/juchmme -a ../tables/ A_TAT_TRAINED -e ../tables/ E_TAT_TRAINED -c 

../conf/conf.tat  -m ../models/tat.mdel -f ../input/ TAT_Train_Set_ALL.fasta 

 

Testing using previous knowledge 

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables/ A_TAT_TRAINED -e 

../tables/ E_TAT_40_TRAINED -c ../conf/conf.tat  -m ../models/tat.mdel -f ../input/ 
TAT_Test_Set.fasta 



 

 

7.4. PRED-LIPO  

This HMM can be used to predict lipoprotein signal peptides in Gram-positive bacteria [23]. 

This example shows how parameter training with JUCHMME works. 

 

 

 

Self-consistency 

java -Xmx4096m hmm/Juchmme -a ../tables/A_LIPO -e ../tables/E_LIPO -c ../conf/conf.lipo -m 

../models/lipo.mdel -t ../input/LIPO_Train_Set.seq -s 

 

k-fold Cross-validation (k=11) 

java -Xmx4096m hmm/Juchmme -a ../tables/A_LIPO -e ../tables/E_LIPO -c ../conf/conf.lipo -m 

../models/lipo.mdel -t ../input/LIPO_Train_Set.seq -v 11 

 

Training 

java -Xmx4096m hmm/Juchmme -a ../tables/A_LIPO_TRAINED -e ../tables/E_LIPO_TRAINED 

-c ../conf/conf.lipo -m ../models/lipo.mdel -f ../input/LIPO_Test_Set.fasta 

 

7.5. PRED-SIGNAL  

This HMM can be used to predict signal peptides in archea [22]. 

This example shows how parameter training with JUCHMME works. 

 

Self-consistency 

java -Xmx4096m hmm/Juchmme -a ../tables/A_ARCHAEA -e ../tables/E_ARCHAEA -c 

../conf/conf.signal -m ../models/signal.mdel -t ../input/ARCHAEA_Train_Set.seq -s 

 

k-fold Cross-validation (k=9) 

java -Xmx4096m hmm/Juchmme -a ../tables/A_ARCHAEA -e ../tables/E_ARCHAEA -c 

../conf/conf.signal -m ../models/signal.mdel -t ../input/Signal-ver+ref_shuffled68.seq -v 9 

Training 



java -Xmx4096m hmm/Juchmme -a ../tables/A_ARCHAEA -e ../tables/E_ARCHAEA -c 

../conf/conf.signal -m ../models/signal.mdel -t ../input/Signal-ver+ref_shuffled68.seq 

 

7.6. LPXTG 

This HMM can be used to predict the LPXTG and LPXTG-like cell-wall proteins of Gram-positive 

bacteria [43]. 

 

Testing 

java -Xmx4096m hmm/Juchmme -a ../tables/A_LPX -e ../tables/E_LPX -c ../conf/conf.tmbb -m 

../models/lpxtg.mdel -f ../input/LPXTG_Test_Set.fasta 

 

7.7. HMMpTM 

This HMM can be used to predict the topology of transmembrane proteins and the existence of 

kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence 

[44]. 

 

Testing 

java -Xmx4096m hmm/Juchmme -a ../tables/A_HELICAL_PTM_v6 -e 

../tables/E_HELICAL_PTM_v6 -c ../conf/conf.hmmptm -m ../models/hmmptm.mdel -f 

../input/hmmptm_test_set.fasta 

 

Testing using previous knowledge 

java -Xmx1024m -Dfile.encoding=UTF-8 hmm/Juchmme -a ../tables//A_HELICAL_PTM_v6 -e 

../tables/ E_HELICAL_PTM_v6 -c ../conf/conf. hmmptm -m ../models/hmmptm.mdel -f 

../input/hmmptm_train_set.3line 

 

7.8. DEMO 

A demo model which describes the so-called Class HMM (CHMM)  



 

Fig. 5. Left. A schematic illustration of a very simple model with four states, two with label (M) and two 

with label (O). The model includes also begin (B) and end (E) states. The model uses multiple label states. 

Right. An example observation sequence x=x1, x2, …,x12 with complete labels and the multiple label states. 

The grey areas of the matrix are calculated as in the standard HMM algorithms whereas f is set to zero in 

the white areas. 

 

Random Sequences Creator 

java hmm/RandomSeq ../tables/A_DEMO ../tables/E_DEMO ../conf/conf.demo 

../models/demo.mdel 100 > demoSet.seq 

 

Self-consistency 

java -Xmx4096m hmm/Juchmme -a ../tables/A_DEMO -e ../tables/E_DEMO -c 

../conf/conf.demo -m ../models/demo.mdel -t ../input/demoSet.seq -s 

 

k-fold Cross-validation (k=9) 

java -Xmx4096m hmm/Juchmme -a ../tables/A_DEMO -e ../tables/E_DEMO -c 

../conf/conf.demo -m ../models/demo.mdel -t ../input/ demoSet.seq -v 9 

 

Training 

java -Xmx4096m hmm/Juchmme -a ../tables/A_DEMO -e ../tables/E_DEMO -c 

../conf/conf.demo -m ../models/demo.mdel -t ../input/demoSet.seq 

 



8. Future developments 

Training, decoding and applying HMMs are subjects of active research in our lab, and thus 

JUCHMME will be continuously updated. 

Web edition: Additionally, we are planning to construct a simple and user-friendly web interface 

that will allow the design of input parameter files in a graphical environment. A graphical illustration 

of the model will help people towards better understanding of the biological problem and HMM 

structure of the model, and will be especially useful for educational purposes. 

New algorithms: We are planning on implementing new and advanced algorithms, like linear 
memory EM and Viterbi algorithms [45], linear-memory Baum-Welch training [46], efficient 
algorithms for training the parameters of Hidden Markov Models using stochastic expectation 
maximization (EM) training and Viterbi training [47]. Finally, we are working with other types of 
extensions to the standard HMM architecture, either by allowing silent states or by introducing 
novel hybrid HMM methods. 
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